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ABSTRACT

The manufacturing sector is a major energy consumer, resulting in high operational costs and envi-
ronmental impacts. In customised manufacturing, optimising energy use is especially challenging
due to high variability and complex interdependencies between process factors. Meanwhile, the
increasing availability of operational data presents opportunities for advanced analytics. Unlike
traditional machine learning, which identifies correlations, causal Al uncovers cause-and-effect rela-
tionships — enabling more explainable and actionable decision-making. This paper presents a causal
Al framework that combines causal discovery and inference methods to analyse drivers of energy
consumption and process duration in customised manufacturing. We integrate three core com-
ponents: DirectLiNGAM and RESIT for causal discovery, and DoWhy for causal inference. Applied
to a real-world case study in a German energy-intensive manufacturing Small and Medium-sized
Enterprise (SME), the framework demonstrates its ability to identify key causal drivers of inefficiency
and energy use. Results show improved interpretability, revealing, for example, that increasing
product weight can reduce energy consumption by up to 4.70 kWh per unit, enabling targeted, data-
driven interventions for optimisation. Compared to correlation-based models, the framework reveals
underlying causes, helping decision-makers focus on critical levers for sustainability and cost reduc-
tion. The findings lay a foundation for applying causal Al in industrial settings through a structured,
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data-driven approach.

1. Introduction

The rise of big data has led to the use of data sci-
ence and machine learning (ML) as effective tools for
improved decision-making, reducing reliance on intu-
ition and placing greater emphasis on data (Brynjolfs-
son and McElheran 2016). This innovative, data-centric
approach has revolutionised the manufacturing field. The
integration of these technologies allows enterprises to
collect and analyse large datasets from different stages
of the production cycle, providing an opportunity to
gain insights into processes and enhance operational
efficiency (Vukovi¢ and Thalmann 2022). The ability
to extract meaningful information from data regarding
manufacturing processes has paved the way for anticipa-
tory decision-making, enabling manufacturers to move
away from reactive approaches and proactively address
potential challenges (Aljuhani et al. 2023).

The efficiency and effectiveness of the production line
significantly impact business success and environmental
sustainability (Bicand Ferndndez 2023). To stay compet-
itive in the manufacturing market, data-driven decisions

are essential. Additionally, efficient energy management
greatly contributes to sustainable manufacturing by opti-
mising energy consumption (Wicaksono, Belzner, and
Ovtcharova 2013). Estimating energy consumption and
production costs becomes particularly challenging when
manufacturing customised products due to the high vari-
ability of processes. To overcome this challenge, ML
models have been employed to predict the power con-
sumption and process duration required for producing
customised stainless steel products (Aikenov, Hidayat,
and Wicaksono 2024).

However, traditional ML models are insufficient for
achieving these goals, as they fail to capture the cause-
and-effect relationships between variables (Hatt and
Feuerriegel 2024; Nesro, Fekete, and Wicaksono 2024).
For effective decision-making, it is essential to under-
stand how changes in one feature impact others, pro-
viding actionable insights for making informed deci-
sions and improving operations. In manufacturing of
customised products, this understanding is particularly
crucial, as adjustments to product features or process
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configurations can directly affect power consumption
and process duration, which in turn impact production
costs (Thapaliya, Valilai, and Wicaksono 2024).

Despite the widespread application of traditional Al
and ML in manufacturing, most approaches rely on
correlation-based models that do not provide insight
into causal mechanisms. As a result, they fail to support
actionable interventions or root-cause analysis. More-
over, the black-box nature of these models limits their
transparency, making them difficult to validate or trust
in high-stakes industrial contexts. This paper addresses
this critical gap by introducing a framework that empha-
sises causal understanding, enabling manufacturers to go
beyond prediction toward informed decision-making.

Understanding the factors influencing power con-
sumption and process duration in manufacturing is also
crucial to maximising operational efficiency and resource
utilisation (Aikenov, Hidayat, and Wicaksono 2024; Shah
and Wicaksono 2024). Causality helps manufacturers
uncover the true cause-and-effect relationships between
factors like product features, energy consumption, and
process duration, and quantify these effects. Analyzing
these cause-and-effect relationships empowers the strate-
gic implementation of changes, resulting in streamlined
procedures, reduced delays, and increased productivity.

Manufacturing involves highly interconnected sys-
tems that generate vast amounts of data, often exceeding
the analytical capacity of humans. Consequently, while
ML models offer predictions, they frequently remain
opaque or black-box in nature due to a lack of trans-
parency in their inner workings (Tiensuu et al. 2021).
Integrating causal Al offers a more sophisticated, trans-
parent, and accurate approach to addressing these
challenges (Mechai and Wicaksono 2024). Causal Al
enhances interpretability, allowing decision-makers to
better understand the underlying factors driving produc-
tion outcomes.

Causal AI is particularly suitable in this context
because customised manufacturing is highly variable,
and operational decisions often involve trade-offs across
energy, quality, and throughput. By uncovering how
product and process parameters causally affect energy
consumption and duration, causal Al enables domain
experts to make interpretable, data-driven interventions
that reflect real-world dependencies. This is crucial in
settings where trial-and-error approaches are costly or
infeasible.

This study addresses two research questions: (RQ1)
Which process and product parameters causally influ-
ence energy consumption and process duration in cus-
tomised manufacturing? and (RQ2) How can causal Al
be used to support interpretable, data-driven decision-
making in energy-intensive production settings? The

proposed approach seeks to address the limitations
of conventional AI models by providing interpretable
insights that facilitate proactive resource management,
energy efficiency, and process optimisation. The pro-
posed approach is validated in a German manufacturing
Small and Medium-sized Enterprise (SME) producing
customised steel products. The company faces challenges
in estimating and optimising energy and production
costs due to the high variation of its products and energy-
intensive processes. Through empirical validation, the
research highlights the potential of causal Al to advance
both operational performance and sustainability goals.

To achieve these objectives, this research makes the
following key contributions:

e We introduce a novel methodology that leverages
causal Al in the manufacturing industry to uncover
and quantify cause-and-effect relationships within
production processes, moving beyond the limitations
of correlation-based traditional Al. Unlike conven-
tional models, which often lack transparency and
interpretability, our approach offers a data-driven
yet understandable framework for decision-making,
enhancing operational insights.

e We present a comprehensive causal Al framework
that integrates multiple causal discovery techniques to
extract relationships from data. This approach eval-
uates the discovered relationships against an expert-
defined causal graph using a set of performance met-
rics. It also includes the identification of causal esti-
mands, estimation of causal effects, and rigorous refu-
tation of the identified relationships to ensure reliabil-
ity and accuracy.

e Through a case study using real-world manufactur-
ing data from an energy-intensive German SME, we
demonstrate how causal Al can outperform tradi-
tional Al by revealing the underlying factors driving
two critical aspects in manufacturing of customised
products: power consumption and process duration.
Our analysis allows manufacturers to understand the
why behind outcomes, enabling proactive resource
management and energy reduction.

e We show the practical advantages of causal Al through
specific findings, such as the impact of machine
operating times, product and process specifications
on power consumption. These insights support tar-
geted interventions, such as selecting energy-efficient
machines or adjusting product specifications, which
traditional AT models may overlook.

This paper is structured as follows. Following the
introduction (cf. Section 1), we present the basic con-
cepts necessary for understanding the methodology (cf.



Section 2). In the subsequent section, we focus on the
related works (cf. Section 3), primarily addressing causal
AT and its applications in manufacturing. Afterward, we
describe the methodology in detail (cf. Section 4). We
then apply this methodology to the case study in three
steps: first, we prepare the dataset (cf. Section 5); sec-
ond, we apply the core analysis of the methodology (cf.
Section 6); and third, we discuss the results (cf. Section 7).
Finally, we summarise the case study and provide an
outlook (cf. Section 8).

2, Background

This section presents key concepts forming the theoreti-
cal foundation of this study, focussing on how causal Al
identifies and quantifies cause-and-effect relationships to
optimise manufacturing efficiency.

2.1. The ‘black-box’ and ‘glass-box’ paradigms

Traditional black-box machine learning models, while
effective at prediction, lack transparency in their
decision-making processes (Muralitharan et al. 2021).
This limitation is critical in manufacturing environments
that require traceability and trust (Holzinger et al. 2017;
Rocha, Papa, and Meira 2012). In contrast, glass-box
models, including Bayesian classifiers, decision trees, and
linear models, offer more interpretability (Azodi, Tang,
and Shiu 2020). However, they often rely on correlation-
based reasoning, which does not support causal inter-
ventions. This study applies causal Al as an alternative
approach that enables interpretable, cause-effect mod-
elling aligned with manufacturing decision-making. It
supports domain experts by revealing not just associa-
tions but actionable causal pathways in energy-intensive
production settings.

2.2. Causal discovery and inference

In this study, causal discovery and inference are employed
to analyse factors influencing energy consumption and
process duration in customised manufacturing, using
data from a real-world German manufacturing SME.
These techniques support the development of models
that go beyond prediction to enable interpretable, data-
driven interventions.

Causal discovery determines causal structures from
data, particularly useful when prior knowledge is limited.
It analyses observational data to detect potential causal
links (Runge et al. 2023). Causal inference quantifies the
effects of variables, estimating how changes in one impact
another (Y. Cui et al. 2023). The increasing availability
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of manufacturing data enhances the accuracy of causal
effect estimation (Crown 2019).

In manufacturing, confounding commonly occurs
when variables such as machine type or product size
influence both process configurations (treatment) and
outcomes like energy use or duration. This study iden-
tifies and adjusts for such confounders to ensure reliable
causal effect estimation (Pearl and Paz 2014).

By integrating causal discovery and inference, we
combine domain expertise and machine learning to clar-
ify causal structures and ensure reliable conclusions.

This study employs Structural Causal Models (SCMs)
and Causal Graphs to model and interpret relationships.

2.2.1. Structural causal models

SCMs provide a mathematical framework for represent-
ing causal relationships, capturing interactions between
production variables. For instance, they describe how
product specifications impact energy consumption. By
defining functional relationships, SCMs allow precise
estimation of intervention effects, aiding process optimi-
sation.

In the context of this study, SCMs are used to model
how changes in modifiable parameters, such as product
dimensions or material types, influence key outcomes
like power consumption and process duration in man-
ufacturing.

SCMs are typically represented as causal graphs, where
nodes correspond to variables and directed edges indi-
cate causal relationships. The stability of these relation-
ships across conditions supports causal hypothesis test-
ing and enhances interpretability (Oliveira, Miguéis, and
Borges 2021).

2.2.2. Causal graphs
Causal graphs, represented as Directed Acyclic Graphs
(DAGs), visually depict causal relationships, facilitating
both causal discovery and inference.

Formally, a causal graph G = (V, E) consists of:

e Nodes V = {X;1,Xa, ..., Xy}, representing variables.
o Directed edges E C V x V,where (X; — Xj) indicates
that X; directly causes X;.

Key elements in this study’s causal graphs include:

o Treatment (Intervention) Variables: Modifiable factors
such as product dimensions or material types.

e Outcome Variables: Targets like process duration or
power consumption.

e Confounders: Variables affecting both treatment and
outcome, requiring adjustment to isolate true causal
effects.
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The acyclic nature of DAGs prevents feedback loops,
ensuring clear causal direction. In our case study, DAGs
provide the structural basis for identifying actionable
causal relationships - such as how a specific product
parameter affects energy consumption - and support
targeted interventions to optimise efficiency. Identify-
ing direct and indirect effects enables targeted inter-
ventions to optimise process performance and energy
consumption.

3. Related work

The manufacturing industry is undergoing rapid data
growth, driven by the need for improved energy effi-
ciency and process optimisation (Vukovi¢ and Thal-
mann 2022). Traditional ML methods have been widely
applied to identify correlations, make predictions, and
enhance process monitoring. However, these methods
often fail to capture cause-and-effect relationships, lim-
iting their ability to provide deeper insights for strate-
gic decision-making (Hatt and Feuerriegel 2024). This
presents a critical research gap, particularly in energy-
intensive industries, where understanding causality can
lead to more actionable insights.

While causal discovery techniques have been explored
in fields like healthcare and finance, their application in
manufacturing remains limited. Some studies have intro-
duced causal AT methods to analyse production processes
and quantify causal effects, yet comprehensive evalua-
tions are still lacking.

This section reviews research on both traditional Al
and causal Al in manufacturing, highlighting their con-
tributions, limitations, and potential for integration.

3.1. Relevance of causality in machine learning

Causal reasoning has played a foundational role in sci-
entific research, particularly in economics and epidemi-
ology (Menegozzo 2022). However, its integration into
machine learning has been slow, with most models rely-
ing on correlations rather than true cause-and-effect rela-
tionships (Pearl 2009). While correlation-based models
detect patterns, they often fail to capture complex real-
world dynamics, making them less effective for decision-
making in fields like healthcare, economics, and manu-
facturing.

Traditional ML models identify correlations without
causal reasoning, which can lead to misguided deci-
sions in high-stakes applications (Makhlouf, Zhioua, and
Palamidessi 2022). Without a causal framework, models
may reinforce existing biases, resulting in unjust out-
comes. Causal Al addresses this challenge by untangling

complex relationships, improving fairness and trans-
parency in automated decision-making.

Although explainable AI (XAI) provides post-hoc jus-
tifications, it often falls short of revealing the true rea-
soning behind model decisions (Hidayat, Ourairat, and
Wicaksono 2024). In contrast, causal Al uncovers root
causes, improving interpretability and trustworthiness
(Rudin 2019). By focussing on causal mechanisms rather
than correlations, it enables more transparent Al systems
that support ethical decision-making (Vowels 2022).

Lim et al. (2024) proposed using cognitive dig-
ital twins (CDTs) with industrial knowledge graphs
for causal inference in maintenance processes. Their
approach enhances decision-making through dynamic
context considerations and cross-domain analysis, sup-
porting predictive maintenance strategies. Unlike tradi-
tional digital twins, their system integrates graph-based
reasoning and explainability, facilitating proactive main-
tenance planning. While their work focuses on mainte-
nance, it underscores the relevance of causal inference in
complex manufacturing systems.

Bampoula, Nikolakis, and Alexopoulos (2024) explore
condition monitoring using LSTM and Transformer
models in predictive maintenance, highlighting the
increasing role of Al in manufacturing reliability, though
without causal modelling.

Building on this, Wyrembek, Baryannis, and Brin-
trup (2025) examined causal machine learning for risk
intervention planning in supply chain management.
While their study applies causal inference to mitigate
risks in maritime engineering, our work extends this
approach by integrating both causal discovery and infer-
ence to analyse manufacturing processes. This com-
bined method enhances our ability to identify causal
structures and design targeted interventions, supporting
scenario-based planning. Expanding beyond predictive
maintenance and risk management, our research further
explores the role of causal inference in manufacturing
optimisation.

3.2. Causal Al in manufacturing

Manufacturing processes are becoming increasingly
complex due to the vast scale of data generated in modern
factories (Wuest et al. 2016). While traditional machine
learning techniques help monitor these processes, they
often fail to provide actionable insights into the root
causes of inefficiencies. This limitation is especially pro-
nounced in mass customisation, where production vari-
ability and customer preferences introduce new chal-
lenges for ML models (Caggiano et al. 2019).

Current ML models employ methods such as non-
linear manifolds and non-Gaussianity to detect patterns



but often lack the interpretability needed for industrial
applications (Shang and You 2019). This complexity can
obscure key factors influencing production efficiency,
making it difficult for manufacturers to implement tar-
geted interventions. Unlike correlation-based insights,
causal Al clarifies the cause-and-effect relationships that
drive process outcomes, enabling more informed, data-
driven decision-making.

Mass customisation further highlights the need to
shift from correlation-based models to causal ones. As
demand for personalised products grows, traditional ML
struggles with the increasing complexity of production
planning and resource allocation (Chen et al. 2023).
Causal AT identifies the true drivers of process variability,
allowing manufacturers to anticipate and adapt to cus-
tomer demands more effectively. By understanding why
certain processes consume more resources or create bot-
tlenecks, causal models optimise workflows, reduce costs,
and improve product quality beyond what conventional
models can achieve (Vukovi¢ and Thalmann 2022).

However, adopting causal AI in manufacturing
presents challenges. Transitioning from correlation-
based models requires changes in data collection and
model development, and validating causal assumptions
can be resource-intensive. Despite these hurdles, the ben-
efits — such as improved process optimisation, enhanced
decision-making, and greater sustainability - justify the
effort. By offering transparent and interpretable mod-
els tailored to manufacturing data, causal AI provides
a competitive advantage in an increasingly data-driven
industry.

In particular, Jeong et al. (2025) propose a frame-
work that demonstrates how causal AI can support sus-
tainability in manufacturing, including energy manage-
ment and process improvements. K. Sharma, Dwivedi,
and Metri (2024) show that embedding causality into
deep neural networks improves both accuracy and inter-
pretability in forecasting energy usage. These studies
reinforce the potential of causal AI but do not address
how to systematically compare discovery methods or val-
idate findings in high-variability environments such as
customised manufacturing.

3.3. Related work on causal Al in manufacturing

This section reviews key studies on causal Al in man-
ufacturing, focussing on ML applications and causal Al
techniques. The selected works highlight AI methods
that emphasise causal relationships to improve inter-
pretability and decision-making. A. Sharma, Zhang,
and Rai (2021) propose an interpretive model for
machine learning in Industry 4.0, structuring manufac-
turing processes into scan, store, interpret, execute, and
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learn components. While their framework supports ML-
driven manufacturing, it remains correlation-based and
does not address causal reasoning. In contrast, our study
extends this approach by incorporating causal discov-
ery and inference techniques to uncover cause-and-effect
relationships in energy-intensive production systems.

Several recent studies have explored causal Al in
manufacturing. Xu and Dang (2023) introduce a causal
knowledge graph approach for root cause analysis
in quality problem-solving, improving transparency in
industrial decision-making. Lim et al. (2024) examine
cognitive digital twins with causal inference for main-
tenance processes, showcasing causal reasoning integra-
tion in smart manufacturing. Wyrembek, Baryannis, and
Brintrup (2025) apply causal machine learning for sup-
ply chain risk intervention planning, demonstrating the
potential of causal inference beyond traditional forecast-
ing models.

Table 1 summarises these studies, comparing objec-
tives, key factors, tools used, and whether causal discov-
ery and inference (including estimation and refutation)
are considered. While some studies focus on predic-
tive modelling in manufacturing (Caggiano et al. 2019;
Han and Zhang 2021; Lin, Lin, and Wang 2022), others
integrate causal Al techniques, such as causal discov-
ery for supply chain risk management (Gardas and Nar-
wane 2024; Wyrembek, Baryannis, and Brintrup 2025)
and energy consumption prediction (Thapaliya, Valilai,
and Wicaksono 2024). However, most remain limited to
specific domains without systematically evaluating mul-
tiple causal discovery methods. Our study addresses this
gap by systematically comparing different causal infer-
ence techniques in a real-world manufacturing setting.

Recent studies have begun exploring causal AI’s role
in energy optimisation and manufacturing. For exam-
ple, Jeong et al. (2025) present a practical framework
for applying causal Al in industrial sustainability, while
K. Sharma, Dwivedi, and Metri (2024) integrate causal-
ity into energy consumption forecasting using neu-
ral networks. Srivastava et al. (2023) leverage causal
explainability to improve sustainability-related decision-
making, and He and Khorsand (2024) use causal Al for
behavioural modelling in energy systems. These works
suggest the growing maturity of causal Al for opera-
tional efficiency but have yet to address heterogeneous,
high-variability manufacturing processes.

The most relevant study by Hagedorn, Huegle, and
Schlosser (2022) analyses unexpected production stops
using causal Al Their research employs causal structure
learning with a modified PC algorithm and effect esti-
mation through Pearl’s do-calculus framework. However,
they do not compare multiple causal discovery methods
or explicitly apply causal refutation techniques.
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Table 1. Related work on causal Al in manufacturing and supply chain management (adapted from Gardas and Narwane 2024).

Causal Al
Authors Objective Key Factors & Tools Methods
Abdulla, Baryannis, and Combine ML classification with Analytic Hierarchy Technical acceptance, best price, delivery mode, None
Badi (2019) Process (AHP) for supplier selection payment term; Decision tree, AHP
Bampoula, Nikolakis, and Predictive maintenance method for evaluating the Multivariate time-series data from production None
Alexopoulos (2024) condition of production assets and predicting assets; Combination of LSTM-Autoencoders and
their remaining useful life (RUL) a Transformer encoder
Caggiano et al. (2019) Improve process modelling and quality control for Layer, size, feature maps, stride, activation; None
Selective Laser Melting (SLM) Bi-stream Deep Convolutional Neural Network
(DCNN)
Gardas and Identify critical factors influencing machine Technology Integration, Forecasting, Data Discovery
Narwane (2024) learning adoption in manufacturing supply Management, Organizational Factors, Inventory

Hagedorn, Huegle, and
Schlosser (2022)
Han and Zhang (2021)

Hashmi, Fekete, and
Wicaksono (2024)
He and Khorsand (2024)

Jeong et al. (2025)

Kosasih and
Brintrup (2022)
Lin, Lin, and Wang (2022)

Lim et al. (2024)
Marazopoulou et al. (2016)

Mechai and
Wicaksono (2024)
Peres et al. (2019)

Roozkhosh, Pooya, and
Agarwal (2022)

K. Sharma, Dwivedi, and
Metri (2024)

A. Sharma, Zhang, and
Rai (2021)
Srivastava et al. (2023)

Thapaliya, Valilai, and
Wicaksono (2024)
Aikenov, Hidayat, and
Wicaksono (2024)

Villegas, Pedregal, and
Trapero (2018)

Wong et al. (2022)

Wyrembek, Baryannis, and
Brintrup (2025)

Xu and Dang (2023)

Our work

chains

Understand unforeseen production downtimes
using log data-driven causal reasoning
Supply chain risk management model

Analyze factors in vehicle engine design
influencing CO; emission

Support accurate analysis and actionable insights
into prosumer behaviour for more effective
demand response program design

Find causal relationships among power
consumption-related variables in CNC machines

Graph Neural Networks (GNN) for supply chain
visibility

Enhance operational efficiency, reduce costs, and
improve responsiveness to market demands

Causal inference in maintenance processes using
cognitive digital twins (CDTs)

Develop causal discovery techniques for
manufacturing domains

Quantify the effect of the Ever Given accident on
shipping container prices

Predict dimensional defects in a real automotive
multistage assembly line

Blockchain acceptance rate in supply chain

Improve energy consumption forecasting by
incorporating causal relationships between
weather conditions and energy consumption
into deep learning models

Interpretive model of ML in Industry 4.0

Identify sector-specific indicators for dynamically
tracking and minimising harmful
emissions/energy consumption

Predict power consumption and processing time of
CNC milling machines using explainable Al (XAl)

Predict power consumption and process costs of
customised steel products

Model selection using support vector machines
(SVM) for forecasting

Al's role in SME supply chain risk management

Supply chain risk intervention planning using
causal machine learning

Causal knowledge graph construction for root
cause analysis in quality problem solving

Compare causal discovery methods and quantify
causal relationships for power consumption and
process duration

Management, Logistic Control, Financial
Management, Resource Management; DEMATEL
Log data, production downtime; PC algorithm

Product quality, supplier prices, demand
fluctuations, logistics costs; BP Neural Network,
reinforcement learning

Engine mass, capacity, fuel type, engine power;
DirectLiNGAM, RESIT

Prosumer DR behaviour under varying program
types and pricing, informed by power system
knowledge; Causal learning and ANN

CNC machine power consumption data; Causal Al

Graph neural networks

BP Neural Networks, particle swarm examinations,
CGAN

Industrial knowledge graphs, design structure
matrix, graph sequencing; Louvain, PageRank

Variables influencing production outcomes; PC
algorithm

Shipping prices, supply chain disruption; SARIMA,
Prophet, Causallmpact

Real-time data analysis and different ML
algorithms

Multi-layer perceptrons, support vector regression

Causal relationships between weather and energy
consumption; Granger causality

ML, Al, analytics for manufacturing optimisation

Transportation, industry, residential, and
service-related data; Machine learning (Random
Forest (RF), Gradient Boosting (GBM), and Deep
Neural Network (DNN)) and XAl (SHAP)

Number of axis rotations, machine travel to zero
point; SHAP, LIME, random forest regression

Machine mix, product variety;
Regularization-based models, random forest
regression, XAl

Information criteria of models, estimation
information, formal statistical tests on sales,
forecasting results; ECOTOOL toolbox, white
noise model, moving average model,
exponential smoothing, SVM

PLS-SEM, ANN

Maritime engineering, intervention models, risk
prediction

Quality problem-solving data; BiLSTM-CRF,
knowledge graphs

Product features (dimensions, material types,
weight), process settings (heat treatment,
process type); DirectLiNGAM, RESIT, causal
inference methods

Discovery, Partial
Inference
None

Partial Discovery,
Partial Inference

Discovery and
Inference

Discovery and
Inference

None

None

Inference

Discovery

Inference

None

None

Inference

None

None

None

None

None

None
Inference

Discovery

Discovery and
Inference




Hashmi, Fekete, and Wicaksono (2024) explore causal
discovery and inference to support sustainable automo-
tive engine design, identifying key factors influencing
CO; emissions. However, their approach lacks a com-
prehensive evaluation of causal discovery and estimation
performance.

A notable review by Vukovi¢ and Thalmann (2022)
provides a structured overview of causal discovery in
manufacturing. The authors highlight its potential to
enhance interpretability, address fairness concerns, and
move beyond traditional correlation-based Al They pro-
pose a research agenda emphasising the limited adoption
of causal Al in manufacturing. Since this study is a review,
it is not included in Table 1, which focuses on empirical
implementations.

While the studies reviewed above address either causal
discovery or inference, few provide an integrated evalu-
ation of multiple causal discovery techniques combined
with estimation and refutation. Moreover, there is lim-
ited focus on energy-intensive customised manufactur-
ing settings where production parameters and product
variability interact in complex causal ways. Our study
addresses these gaps by systematically comparing mul-
tiple causal discovery techniques, incorporating domain
knowledge into validation, and applying causal infer-
ence to quantify the effects of key variables on energy
consumption and process duration.

3.4. Power consumption and process duration in the
stainless-steel industry

The stainless-steel industry is highly energy-intensive,
with power consumption significantly impacting oper-
ational costs and environmental sustainability. Addi-
tionally, process duration directly influences production
efficiency and resource utilisation. Understanding the
relationship between these factors is key to identifying
energy-saving opportunities, optimising processes, and
reducing greenhouse gas emissions. This section exam-
ines the key drivers of power consumption and process
duration, emphasising areas for improvement through
technological advancements and process management.
These insights inform the subsequent case study, which
highlights actionable strategies for enhancing sustain-
ability in stainless-steel manufacturing.

3.4.1. Power consumption

Global energy consumption is significantly influenced
by industrial activities (Guerra-Zubiaga, Al Mamun, and
Gonzalez-Badillo 2018), with the iron and steel sectors
being particularly energy-intensive. As of recent data,
these sectors are responsible for approximately 25% of the
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total industrial energy consumption worldwide (Interna-
tional Energy Agency 2023). According to the US Energy
Information Administration, the energy demand in the
industrial field is expected to increase by approximately
33% by 2040, necessitating new methods and technolo-
gies to help reduce energy consumption and mitigate
CO; emissions, which currently account for around 2.6
billion tons globally, with projections suggesting this
could rise to 3.0 billion tons by 2050 (Mousa et al. 2016).

Recent research has focussed on optimising power
consumption in manufacturing processes. For exam-
ple, Thapaliya, Valilai, and Wicaksono (2024) employed
explainable artificial intelligence (XAI) techniques to
predict power consumption and processing time of CNC
machines using various machine learning models. Their
study found that the number of axis rotations and trav-
els to the machine’s zero point were the most influential
factors in determining power consumption.

Further studies have explored the role of power con-
sumption in the production of customised products. For
instance, Aikenov, Hidayat, and Wicaksono (2024) exam-
ined how machine learning models could accurately pre-
dict both power consumption and production costs in
mass customisation environments. While accurate pre-
dictions are critical, these approaches remain correlation-
based and may fail to explain why certain products or
processes consume more energy.

Moreover, Gajdzik, Wolniak, and Grebski (2023) high-
lighted the variation in electricity and heat demand
depending on the steel production process. Innovations
have reduced energy consumption, but integrating causal
AT could further optimise energy use by identifying crit-
ical factors influencing consumption at each stage of
production.

Fatla et al. (2024) explored high-temperature batch
annealing technologies for grain-oriented electrical steel,
emphasising the importance of optimising anneal-
ing temperatures to reduce energy usage. While their
research identifies key variables for energy reduction,
causal Al could help prioritise which factors have the
most significant causal impact on energy consumption,
enabling more strategic interventions in energy-intensive
processes.

In a related study, Damiani et al. (2014) presented an
innovative model for real-time energy-based cost reduc-
tion in the steel industry. While real-time data integration
improves energy efficiency, the incorporation of causal Al
could enhance decision-making by quantifying the direct
impact of energy-saving strategies. This approach enables
manufacturers to evaluate the outcomes of energy inter-
ventions and gain insights into their long-term effects on
overall energy consumption.
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Lastly, Conejo, Birat, and Dutta (2020) reviewed the
broader environmental challenges of the steel industry,
emphasising that energy consumption and carbon emis-
sions are key areas of concern. New technologies and
recycling methods are critical for reducing the industry’s
energy footprint, but they are often implemented based
on observed correlations rather than understanding the
true drivers of energy inefliciency.

One key challenge that requires attention is the vari-
ability of power demand across different stages of produc-
tion, which can result in inefficiencies and higher operat-
ing costs. Numerous factors influence electric power con-
sumption (Moon and Kim 2017); therefore, it is essential
to identify the most influential variables, such as equip-
ment settings, raw material variations, and production
parameters, to implement targeted energy-saving strate-
gies. However, most existing models are limited by their
inability to distinguish between correlation and causa-
tion, making it difficult to prioritise interventions effec-
tively. Developing robust causal Al solutions that can
adapt to changes in production data is crucial for both
academic research and real industry applications (C. Cui
et al. 2020). Causal Al can provide deeper insights into
the underlying drivers of power consumption, enabling
manufacturers to develop more effective, long-term solu-
tions for energy efficiency.

3.4.2. Process duration

Industrial activities account for a significant share of
global energy consumption, with the iron and steel sec-
tors responsible for approximately 25% of total industrial
energy use (Guerra-Zubiaga, Al Mamun, and Gonzalez-
Badillo 2018; International Energy Agency 2023). The
US Energy Information Administration projects a 33%
increase in industrial energy demand by 2040, with CO,
emissions from the steel industry potentially rising from
2.6 to 3.0 billion tons by 2050 (Mousa et al. 2016). These
trends underscore the need for energy-efficient manufac-
turing solutions.

Recent research has explored power consumption
optimisation in manufacturing. Thapaliya, Valilai, and
Wicaksono (2024) employed explainable AI (XAI) tech-
niques to predict CNC machine power consump-
tion, identifying axis rotations and machine travel to
the zero point as key factors. Aikenov, Hidayat, and
Wicaksono (2024) examined power consumption in
mass customisation, highlighting the need for deeper
causal insights to explain energy inefficiencies. Similarly,
Gajdzik, Wolniak, and Grebski (2023) found that elec-
tricity and heat demand vary across steel production
processes, emphasising the potential for causal Al to
optimise energy use by pinpointing critical influencing
factors.

High-temperature batch annealing technologies have
also been studied for energy reduction. Fatla et al. (2024)
emphasised the importance of optimising annealing tem-
peratures, but causal Al could further prioritise variables
with the most significant impact. Additionally, Dami-
ani et al. (2014) developed a real-time energy-based cost
reduction model for steel production, which could be
enhanced with causal Al to quantify the direct impact of
energy-saving strategies.

Broader industry reviews highlight energy consump-
tion and carbon emissions as major challenges (Conejo,
Birat, and Dutta 2020). While new technologies and
recycling methods are critical, they often rely on
observed correlations rather than understanding true
causal drivers of inefficiency. Identifying the most influ-
ential variables - such as equipment settings, raw mate-
rial variations, and production parameters — is essen-
tial for targeted energy-saving strategies (Moon and
Kim 2017). Most existing models struggle to distin-
guish correlation from causation, limiting their effective-
ness. Developing robust causal AI solutions that adapt to
evolving production data is crucial for advancing energy
efficiency in both research and industry applications (C.
Cui et al. 2020).

3.5. Conclusion of related work

The literature highlights that while traditional AI has
advanced manufacturing, most existing methods focus
on correlation-based analyses, limiting their ability to
uncover cause-and-effect relationships. This gap is espe-
cially critical in areas like energy consumption and pro-
cess optimisation, where understanding causality can
drive more impactful and sustainable improvements.

Although some studies explore causal Al, its applica-
tion in manufacturing remains limited and fragmented.
Challenges like data collection, model development, and
validating causal assumptions are barriers, but the poten-
tial benefits — such as clearer insights, better decision-
making, and optimised resource use — underscore its
importance.

Existing research primarily applies causal Al in spe-
cific areas such as predictive maintenance and supply
chain risk management, often without a systematic evalu-
ation of causal discovery methods. In contrast, our study
directly compares multiple causal discovery techniques
and validates them against an expert-defined reference
model. This comparative approach allows us to assess
their suitability for manufacturing applications and iden-
tify their strengths and limitations. Furthermore, while
prior studies typically focus on either causal discovery
or causal inference, we integrate both approaches within
a unified framework, ensuring a more comprehensive
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Figure 1. Overview of the causal analysis methodology used to uncover relationships in stainless steel manufacturing. The diagram
illustrates the sequential steps of the study, including data collection, preprocessing, exploratory analysis, causal graph discovery, and val-
idation against domain knowledge. Each step contributes to identifying and interpreting causal relationships among production features,

such as energy consumption and process duration.

analysis of cause-and-effect relationships in manufactur-
ing processes.

By addressing these limitations, our study not only
applies causal discovery but also uses causal inference
to quantify the effects of key factors. We assess the
robustness of causal estimation results through multiple
causal refutation techniques, ensuring the reliability of
our findings. By integrating these methods into a com-
prehensive framework, we provide actionable insights
for enhancing efficiency and sustainability, offering a
structured approach to data-driven decision-making in
manufacturing.

4. Overview of the methodology

This study applies causal Al techniques to investigate
power consumption and process duration in stainless
steel manufacturing. We employ a combination of meth-
ods to uncover the underlying causal structures, facil-
itating a comprehensive analysis of key factors and
enabling the optimisation of both resource use and oper-
ational efficiency. Furthermore, we quantify the discov-
ered causal relationships to assess the magnitude of influ-
ence each factor has on power consumption and process

duration. This quantification enables targeted interven-
tions, helping decision-makers focus on the most impact-
ful variables.

4.1. Main steps

The diagram shown in Figure 1 represents the core steps
undertaken in this methodology to explore and quantify
causal relationships within the dataset. Each numbered
step in the diagram corresponds to the following key
components of the methodology:

e Data Collection (1): Relevant datasets are gathered
from the manufacturing process, focussing on key
variables that impact power consumption, production
timelines, and quality metrics.

e Data Preprocessing and Exploratory Data Analysis
(EDA) (2-3): Data preprocessing includes handling
missing values, normalising scales, and perform-
ing initial transformations. Exploratory data anal-
ysis provides insights into distributions, correla-
tions, and possible data anomalies, establishing a
foundational understanding for subsequent causal
analysis.
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o Literature ¢ Domain Knowledge (4-5): A literature
review and domain expertise are used to identify
key variables and plausible causal relationships. The
authors themselves served as domain experts based
on their extensive experience in manufacturing data
science and operations research. An initial set of
causal assumptions was formulated based on well-
established relationships in the literature and validated
by known process dependencies in the target manu-
facturing setting (see Table 1). To enhance reliability,
the draft causal graph was reviewed in two structured
feedback rounds with external domain experts, engi-
neers and process analysts, from the manufacturing
company. Discrepancies and alternative explanations
were discussed collaboratively until a consensus was
reached. Consensus was defined as mutual agreement
among at least two authors and two external experts
on the directionality and plausibility of each edge in
the causal graph. By building on prior studies and
expert insights, this step helps contextualise the vari-
ables and their interactions. The goal is to create a
manual causal graph that is realistic and easy to under-
stand within the framework of existing knowledge.

e Hpypothesis Development (6): A hypothesised causal
structure is constructed based on the knowledge gath-
ered. This hypothesis suggests potential causal rela-
tionships, particularly those that might influence pro-
cess efficiency, energy usage, and product quality.

e Manually created causal graph (8): From the devel-
oped hypothesis, a manual causal graph is created to
serve as the basis for comparative analysis. This graph
serves as the ground truth and a reference point for
evaluating the quality of causal discovery results. The
causal graph was developed through an iterative pro-
cess that combined literature-derived assumptions,
process mapping, and empirical observations from
exploratory data analysis. Each relationship was jus-
tified either through domain knowledge (e.g. known
causal dependencies between processing time and
power usage) or supported by references in exist-
ing industrial research. External expert feedback was
incorporated through structured interviews and vali-
dation workshops. Differences in interpretation were
discussed until a consensus graph was formed. To
ensure internal consistency, the graph was checked for
logical coherence and acyclic structure. The final ver-
sion was used not only as an evaluation benchmark but
also as a transparent documentation of the assumed
causal structure in the case study.

e Causal Discovery (7): We use causal discovery algo-
rithms, such as DirectLINGAM for linear relation-
ships and RESIT for nonlinear ones, to generate a

data-driven causal graph. This step allows us to iden-
tify causal relationships directly from the data, reveal-
ing influences that may not have been hypothesised
initially.

e Causal Graph Evaluation & Refinement (9): The gen-
erated causal graph is evaluated against the manually
generated causal graph. Discrepancies are analysed,
and refinements are made to enhance the accuracy of
causal inferences. Adjustments may be required based
on the presence of previously unobserved relation-
ships or confounding factors.

e Causal Identification (10): Specific cause-and-effect
relationships are identified within the causal graph.
This involves pinpointing variables and pathways
where causal inference can be robustly estimated,
which are crucial for answering specific research ques-
tions on the process and energy efficiency.

e Causal Estimation (11): Quantitative estimation of
identified causal effects is performed. This step mea-
sures the magnitude of relationships between vari-
ables, allowing for a deeper understanding of how
changes in one variable impact another in the man-
ufacturing process.

e Refutation & Validation (12): Rigorous refutation tests
are applied to confirm the robustness of causal infer-
ences. Validation may include sensitivity analysis,
placebo tests, and checks against potential biases, pro-
viding confidence in the causal claims.

e Final Report (13): A comprehensive report documents
the methodology, from data collection to final causal
analysis results. This report summarises key findings,
validated causal relationships, and recommendations
for practical applications in manufacturing.

4.2. Algorithm and library selection

In causal inference, a causal estimand refers to a for-
mal expression of the causal effect we aim to quantify
- such as the average treatment effect (ATE) of a pro-
cess parameter on energy consumption. Refutation, by
contrast, involves testing whether the estimated effect
is robust against potential confounding, bias, or ran-
domness, often through techniques like placebo treat-
ments, data subset validation, or adding random com-
mon causes.

There are numerous causal discovery and inference
algorithms available today, each offering distinct advan-
tages and limitations. The objective of this study is to
demonstrate the effectiveness of a selected algorithm
within the manufacturing industry. The selection of
the algorithm is guided by the specific properties
of the dataset. Comprehensive examinations of causal



discovery algorithms can be found in studies by (Gly-
mour, Zhang, and Spirtes 2019; Nogueira et al. 2022).

For this study, we employed the DirectLiNGAM and
RESIT methods, both of which belong to the category of
Functional Causal Models-Based Algorithms. The selec-
tion of these algorithms is motivated by the specific
characteristics of our data and research goals.

DirectLiNGAM, an enhancement of the original
LiINGAM algorithm, is well-suited for uncovering direct
linear causal relationships, particularly when the data fol-
lows non-Gaussian distributions (Shimizu et al. 2011).
Its computational efficiency and ability to estimate causal
ordering make it particularly valuable in the manufactur-
ing context, where certain variables exhibit linear depen-
dencies. This algorithm is also advantageous due to its
robustness in detecting the direction of causality in cases
where traditional correlation-based models fall short,
providing clearer insights into production factors that
exhibit linear effects.

Conversely, the RESIT (Regression with Subsequent
Independence Test) algorithm is adept at modelling non-
linear causal relationships in the presence of additive
noise (Peters et al. 2014). Manufacturing processes often
involve complex, nonlinear interactions between vari-
ables, such as varying machine settings, material prop-
erties, and environmental conditions. RESIT’s strength
lies in its ability to accommodate nonlinearity and cap-
ture intricate causal pathways that linear models, like
DirectLiNGAM, may miss. This makes RESIT an essen-
tial tool for analysing data where nonlinear dependencies
play a significant role, providing comprehensive insights
that align with the multifaceted nature of manufacturing
data.

We chose DirectLiNGAM and RESIT over well-
known alternatives such as the PC algorithm, GES, and
NOTEARS due to important methodological and prac-
tical considerations. PC and GES are constraint-based
and score-based approaches, respectively, which often
assume causal sufficiency and require strong faithfulness
assumptions. Their performance can degrade with lim-
ited sample sizes and noisy measurements, which are
typical in manufacturing datasets with high variability
but limited observations per condition. NOTEARS, while
powerful and differentiable, involves solving a contin-
uous optimisation problem over the space of Directed
Acyclic Graphs (DAGs). This can be computationally
demanding and less interpretable for practitioners in
domains requiring transparent and domain-validated
models. Additionally, NOTEARS is sensitive to hyper-
parameter tuning and less effective when the causal
mechanisms are nonlinear and additive. By contrast,
DirectLINGAM leverages the statistical property of non-
Gaussianity for identifying causal directions without
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relying on conditional independence tests, making it
more robust under sample constraints. RESIT extends the
applicability to nonlinear settings using regression and
independence testing, without requiring global optimi-
sation or score computation. Together, they form a com-
plementary pair that captures a wide range of real-world
causal structures (i.e. linear and nonlinear) while being
computationally tractable and interpretable in industrial
settings.

The dual approach of combining DirectLiINGAM for
linear relationships and RESIT for nonlinear dynamics
maximises the robustness and depth of our causal dis-
covery process. By leveraging both algorithms, we ensure
that the analysis captures a full spectrum of potential
causal relationships within the dataset, ranging from
straightforward to complex interactions.

In addition to these algorithms, we employed the
DoWhy! library, which offers a comprehensive frame-
work for causal inference. Developed by Sharma and
Kiciman (2020), DoWhy facilitates causal reasoning and
allows researchers to validate and refute causal assump-
tions systematically. It provides a user-friendly interface
that integrates various causal modelling techniques, mak-
ing it accessible for practitioners in the field.

DoWhy’s process consists of four main steps: Model,
Identify, Estimate, and Refute. In the Model step, prior
knowledge is converted into a causal graph, helping to
visually represent the relationships among variables. The
Identify step uses the causal graph to determine the causal
effect of interest, while the Estimate step employs statis-
tical methods to estimate the identified causal estimand.
Finally, the Refute step tests the robustness of the assump-
tions made in the initial model, allowing researchers to
assess the validity of their causal inferences.

By integrating DirectLiNGAM, RESIT, and DoWhy,
we create a powerful toolkit that enables us to investigate
both linear and nonlinear causal relationships effectively,
paving the way for more informed decision-making in
manufacturing processes.

5. Preparation of the case study
5.1. Case study and dataset description

This case study focuses on a German manufacturing
company that produces customised steel products. The
company specialises in make-to-order products with
specific customisation requirements, such as varying
dimensions, material treatments, and energy-intensive
processes. As a result, the company faces significant
challenges related to energy consumption, production
costs, and process optimisation, especially when fulfilling
diverse and complex customer orders.
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The production flow begins with the specification
of product requirements, including dimensions, weight,
and heat treatment processes. After the initial specifi-
cations are set, raw materials undergo a series of man-
ufacturing stages: sawing, heating, forging, rolling, and
surface finishing, each consuming varying amounts of
energy and time depending on product complexity. For
instance, larger products with complex designs tend to
require more energy and longer processing times. The
company faces the challenge of optimising energy con-
sumption and processing costs while maintaining prod-
uct quality and meeting delivery deadlines. This requires
identifying both direct and indirect factors that impact
energy use and the duration of processes conducted at
multiple production stations. These complex interactions
present an ideal case for causal discovery to uncover the
true causes behind inefliciencies.

To address these challenges, two distinct datasets were
utilised in this analysis:

e Power Consumption Dataset: This dataset focuses on
the energy consumed during each stage of the produc-
tion process.

e Process Duration Dataset: This dataset captures the
time taken for each stage of production, reflecting
process efficiency.

The Power Consumption Dataset contains 12,688
records, while the Process Duration Dataset includes
40,583 entries. These reflect six months of production
across three stations. After preprocessing, a filtered sub-
set was used for each causal analysis task, ensuring data
consistency and completeness.

The data collection phase, corresponding to Step
1 in Figure 1, involved gathering detailed records of
product specifications, process parameters, energy con-
sumption, and process durations over a six-month
period. The goal was to comprehensively understand
the production dynamics for causal analysis. Product
features, specifications, and process duration data were
obtained from the company’s Enterprise Resource Plan-
ning (ERP) system, while energy consumption data
were recorded using energy meters installed at produc-
tion stations. During integration, we encountered occa-
sional mismatches between energy meter logs and ERP
production events due to slight timestamp misalign-
ments or overlapping tasks. Approximately 3% of records
required manual correction or exclusion to ensure reli-
able matching.

The data were collected from three different produc-
tion stations, identified by their station IDs: 50513, 50514,
and 50516. The production machines at these stations
include:

Table 2. Data dictionary of the variables used in the causal anal-
ysis.

Feature Description

Unique identifier for each product

Outer diameter of the product (in mm)

Inner diameter of the product (in mm)

height Height of the product (in mm)

weight Weight of the product (in kg)

heat_treatment_category Categorical variable indicating the
type of heat treatment applied

Identifier for the production
workstation

Energy consumed during the
production process (in kWh)

Time taken to complete the
manufacturing process (in seconds)

product_id
outer_diameter
inner_diameter

workplace_id
power_consumption

process_duration

Note: The table provides definitions and units for each feature extracted from
the stainless steel manufacturing datasets, covering both physical product
attributes and production parameters.

e Ring-Rollers: Located at two stations, with IDs 50513
(old ring-roller) and 50514 (new ring-roller).
e 3500t Press: Located at station ID 50516.

The primary analysis focuses on station ID 50513,
which provides a representative overview of the pro-
cesses. The old ring-roller station involves continuous
energy-intensive heating, unlike other processes that may
not require sustained thermal energy. Moreover, the
rolling process for stainless steel rings can take longer due
to its hardness and high resistance to deformation that
results in higher cumulative energy consumption. Fig-
ures and tables related to other stations are included in
the appendix (cf. Section Appendix).

The ERP and energy meter data were linked and inte-
grated, resulting in two datasets. After data cleaning,
both datasets shared common features, including prod-
uct_id, outer_diameter, height, weight, heattreatmentcate-
gory_id, and workplace_id. The main difference between
the datasets lies in their target variables; the Process
Duration Dataset includes inner_diameter, which is not
present in the Power Consumption Dataset. While the
number of features is relatively limited, they capture the
most relevant product and process characteristics avail-
able in the company’s ERP and sensor systems. Given the
high-quality and large volume of records, this focussed
feature set is considered sufficient for reliable causal dis-
covery. The key features of the datasets are summarised
in Table 2.

While this case study focuses on a single SME with
specific machinery in the stainless-steel industry, the
findings and methodological framework are designed
to be generalisable to other production environments
with similar operational characteristics. First, the chal-
lenges addressed - such as energy consumption, process
variability, and product customisation - are common



Table 3. Summary statistics for the two main target variables
used in the analysis: power consumption and process duration.

Standard
Dataset Mean Median deviation
Power Consumption (kWh) 81.27 72.00 56.72
Process Duration (sec) 3546.99 1140.00 6128.24

Note: These descriptive statistics (mean, median, and standard deviation) pro-
vide insight into the distribution and variability of the variables prior to
causal modelling.

across many energy-intensive industries, including auto-
motive, aerospace, heavy machinery, and chemical pro-
cessing. Second, the data structure (ERP-linked pro-
duction records and sensor-based energy logs), causal
discovery approach (covering both linear and nonlin-
ear methods), and inference techniques (quantifying
effects and validating robustness) are agnostic to spe-
cific machine types or product formats. Moreover, the
causal modelling process is modular and can be adapted
to different production systems by substituting rele-
vant features (e.g. torque, temperature, material type)
while preserving the analysis flow. The inclusion of both
expert-validated causal graphs and refutation tests sup-
ports robustness beyond a single factory layout, enhanc-
ing transferability. Thus, although the data come from
one industrial partner, the analytical approach, validation
process, and insights into the role of product attributes
on energy and time consumption offer a replicable and
scalable framework for other manufacturers that want
to implement interpretable and data-driven optimisation
strategies.

5.2. Exploratory data analysis

Exploratory Data Analysis (EDA) (cf. Figure 1, Step 3)
was conducted to gain insights into the data’s char-
acteristics and identify relationships among variables.
Since the variables were consistent across both datasets,
identical steps were followed for visualisation and
preprocessing.

Table 3 summarises the key statistics for both the
Power Consumption Dataset and the Process Duration
Dataset. The high standard deviations in both indicate
considerable variability, suggesting the need for further
investigation into influencing factors and opportunities
for optimisation.

Data visualisation began with a univariate analysis.
Distribution plots showed a right-skewed distribution
for both power consumption and process duration, with
peak consumption at around 72.00 kWh and most pro-
cesses lasting less than 1400 s, except for a few outliers.
The corresponding distribution plots are presented in
Figure A1 (see appendix).
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Histograms were generated to explore the frequency of
different product categories. These histograms
(Figure A2, see appendix) revealed that product category
S6 was significantly more frequent than others. Given the
limited data on other categories, they were excluded from
further analysis for clarity. For privacy, product categories
were anonymized as S1, 52, $4, and S6.

The key part of the analysis was the multivariate anal-
ysis to understand relationships between variables. Pear-
son correlation was used to measure linear relationships
between production features and energy consumption.
Figure 2 shows the correlation heatmap for station 50513,
highlighting the positive relationship between variables
such as weight and height and power consumption.

Figure 2 shows a moderate relationship between
height and weight, indicating that larger products tend
to be heavier. However, power consumption does not
have a significant correlation with any of the examined
features, suggesting that other factors influence energy
usage. The heat treatment category has a moderate cor-
relation with weight, implying that heavier products may
undergo specific heat treatment processes, but its con-
nection to power consumption is weak. These findings
suggest that while product size and weight are closely
linked, further investigation is needed to determine the
key factors affecting power consumption in production.

5.3. Dataset preprocessing

During data preprocessing (cf. Figure 1, Step 2), we
addressed missing values, standardised measurements,
and performed initial transformations. This preprocess-
ing, combined with Exploratory Data Analysis (Steps 2-3
in Figure 1), laid the groundwork for causal analysis by
identifying patterns and potential anomalies.

Initially, we visualised the missing values in the
datasets. The Power Consumption Dataset had no miss-
ing values, while the Process Duration Dataset exhibited
gaps in the outer_diameter and workplace_ID columns.
For the missing values in outer_diameter, we utilised a
simple imputer to fill in the gaps. However, we chose to
drop rows with missing workplace_ID entries due to the
critical nature of accuracy for this feature, as estimating
values could lead to biased analyses.

Following this, we applied standard scaling to the
data to enhance the performance of the subsequent algo-
rithms.

The insights gained from the exploratory data analysis
will inform strategies for optimising energy use and man-
ufacturing processes, enhancing overall efficiency and
sustainability. This preprocessing phase effectively trans-
formed the raw data into a usable format, setting the stage
for further analyses and the development of hypotheses.
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Figure 2. Correlation heatmap of numerical variables related to power consumption for workstation 50513. Each cell represents the
Pearson correlation coefficient between pairs of variables, with values ranging from —1 (strong negative correlation) to 1 (strong posi-
tive correlation). Darker shades indicate stronger correlations. This analysis helps identify potential linear relationships among product

features such as weight, height, and outer diameter.

6. Utilizing causal Al for dataset analysis
6.1. Hypotheses for causal relationships

Based on insights from the literature and domain knowl-
edge (Step 4-5 in Figure 1), we developed a hypothe-
sis suggesting possible causal pathways. This hypothesis
development (Step 6 in Figure 1) served as the foundation
for constructing the initial causal graph manually.

Table 4 presents hypotheses specific to the Power Con-
sumption Dataset, where each claim describes a pre-
sumed causal relationship between variables:

Given the presence of many common features, some
correlations observed in this dataset align with those
from the previous analysis, such as ‘Height — Weight’
and ‘Outer Diameter — Weight’. To avoid redundancy;,
these correlations will not be repeated. Table 5 presents
hypotheses developed specifically for the Process Dura-
tion Dataset, focussing on relationships pertinent to pro-
cessing time:

6.2. Create the causal graph

Based on the hypotheses presented in Section 6.1, we
manually created causal graphs to visually represent
the hypothesised relationships derived from domain

knowledge. These graphs illustrate cause-and-effect rela-
tionships through the direction of arrows, clarifying how
specific factors may drive changes in energy consump-
tion and process efficiency. Figure 3 depicts the hypothe-
sised cause-and-effect relationships for Power Consump-
tion Dataset and Process Duration Dataset, providing a
clear view of how various factors influence these key vari-
ables. These manually generated causal graphs serve as
ground truth models for comparative analysis with the
graphs discovered through DirectLiNGAM and RESIT
(see Step 8 in Figure 1).

The manual graphs were constructed by the research
team based on their domain expertise in stainless-
steel manufacturing, a targeted review of relevant lit-
erature (see Tables 4 and 5), and incorporation of
the feedback from external domain experts. Variables
were selected based on their prevalence in prior stud-
ies and observed relevance in the company’s ERP sys-
tem. Each arrow was reviewed and validated through
iterative discussion among the authors. These graphs
serve as ground truth structures for evaluating discov-
ered graphs. Evaluation involved calculating overlaps and
mismatches (e.g. true positives, false positives, reversed
edges) between the manual and algorithm-generated
graphs.
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Power Consumption Dataset Causal Graph Process Duration Dataset Causal Graph
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Treatment iameter
Inner Heat
Diameter Treatment
Weight < Height \
/ Weight
Outer uration

Diamete\
Power

Consumption Height

Figure 3. Manually constructed causal graphs used as reference models for evaluating causal discovery. The graph on the left repre-
sents hypothesised causal relationships affecting power consumption, while the graph on the right represents those influencing process
duration. Nodes correspond to product and process features (e.g. weight, height, outer diameter, heat treatment category), and directed
edges indicate assumed cause-and-effect relationships based on domain knowledge and literature. These graphs serve as ground truth

for evaluating the accuracy of algorithmically generated causal structures.

Table 4. Hypotheses for causal relationships in the power consumption dataset.

Claim

Description

Height — Weight

Outer Diameter —
Weight

Weight — Heat
treatment

Weight — Power
Consumption

Heat treatment — Power
Consumption

Outer Diameter —
Power Consumption

‘Differences in the relationship of weight to height, and thus the meaning of BMI, according to age, sex, and birth year cohort’
(Johnson et al. 2020): This study focuses on people, stating that in human beings, weight increases proportionally to height
squared. However, this can also be translated into manufacturing products. Although this relationship is not as straightforward,
itis generally true that these two factors have a positive relationship. Stainless steel has a specific density, thus a given height
will increase weight proportional to the density.

The weight of a steel pipe can be calculated using the volume formula.? For example, to calculate the weight of a steel pipe, it is
necessary first to find its volume. According to Alambra’s webpage, the volume can be computed using the following formula:

2 2
V:n((%) (%) ) o)
2 2

where D, represents the outer diameter, D; the inner diameter, and L the length of the pipe.

After computing the volume, it is possible to calculate the weight by simply multiplying V times the density of the material. This
shows a relationship between outer diameter and weight. Changes in the outer diameter of the pipe will be reflected in its
weight.

‘Heat Treatment of Steels’ (Singh 2012): The text emphasises the need for tailored heat treatment parameters to modify the
structure of the material. Therefore, it can be assumed that heavier products might require different heat treatment parameters
compared to the thinner ones to achieve desired properties uniformly throughout the material.

‘Impact of lightweight design on energy consumption and cost-effectiveness of alternative powertrain concepts’ (Redelbach,
Klotzke, and Friedrich 2012): Results show that having lighter-weight products in manufacturing helps to reduce energy
consumption. However, the energy-saving potential through lightweight decreases with increasing degree of electrification. As
stainless-steel production has a higher degree of electrification, the effect of reducing the weight of the products might not be
as noticeable as in other industries.

‘Heat Treatment Energy Mapping’ (Mbanyeude 2023): This research conducted an energy mapping of AB SKF, a leading global
steel-bearing manufacturer. The study mapped the heat treatment process, a main part of their production process. The
researchers state that heat treatment accounts for around 25% of SKF’s energy consumption, proving that heat treatment
directly affects power consumption.

‘Effect of tube diameter on the specific energy consumption of the ice making process’ (Tangthieng 2011): In this study, choosing
a proper tube diameter can lead to higher energy efficiency by minimising specific energy consumption over the entire
production cycle. However, for the case of stainless-steel manufacturing, larger outer diameters often require bigger machinery
and more complex processes, increasing energy usage. Moreover, achieving precise dimensions and surface finishes in larger
products may demand additional energy for adjustments and control.

Note: @A similar formula is used in online tools such as the Pipe Weight Calculator (https://www.omnicalculator.com/construction/pipe-weight), accessed 27 May

2024.

6.3. Causal discovery

In this study, we employ causal discovery to identify
cause-and-effect relationships from data, rather than just
correlations (cf. Figure 1, Step 7). We utilised two causal

discovery techniques: DirectLiNGAM and RESIT. We
chose DirectLINGAM, which assumes linear relation-
ships, since some of the relationships among variables in
our dataset are linear, such as the relationship between
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Table 5. Hypotheses for causal relationships in the process duration dataset.

Claim

Description

Height — Process Duration

Inner Diameter — Weight

Inner Diameter — Outer Diameter

Inner Diameter — Process Duration

Outer Diameter — Process Duration

Height — Process Duration

Weight — Process Duration

Heat Treatment — Process Duration

‘The relationship between materials selection and materials processing’ (Dieter 1997): Taller stainless-steel products
require more material and might undergo more intricate manufacturing processes, leading to longer processing
times. Additionally, achieving precise dimensions and surface finishes in taller products may necessitate slower
processing speeds or more complex machining operations, contributing to extended durations.

The same formula applies to inner diameter calculations.?

Following the logic shown in Table 4 regarding the relationship between outer diameter and weight, it can be
observed that the interaction of inner diameter and weight is analogous. In the formula previously mentioned for
volume, Di equals inner diameter.

Do\* (Di\?
=((2) () @

where D, represents the outer diameter, D; the inner diameter, and L the length of the pipe.

After computing the volume, it is possible to calculate the weight by simply multiplying V times the density of the
material. This shows a relationship between inner diameter and weight. Changes in the inner diameter of the pipe
will be reflected in its weight.

‘Process Piping: ASME Code for Pressure Piping, B31.3" (American Society of Mechanical Engineers 2005): The inner
and outer diameters of a pipe are mathematically related, and the following formulas can be used to convert
between them:

ID = OD — 2 x Wall Thickness. 3)

OD = ID + 2 x Wall Thickness. (4)

Any increase or decrease in the outer diameter affects the inner diameter proportionally, assuming wall thickness is
constant or varies proportionally with other dimensions.

‘Integration Upsetting of Tube’ (Weigiang 2001): Larger inner diameter might result in shorter process durations due
to increased material flow rates or reduced processing times.

‘The influence of length — diameter ratio in forming area on viscous outer pressure forming and limit diameter
reduction’ (Gao et al. 2017): A larger outer diameter might lead to longer process durations due to increased
material volume or surface area, which may require more time for processing.

‘A design of experiments approach for the optimisation of energy and waste during the production of parts
manufactured by 3D printing’ (Griffiths et al. 2016): The result of this study shows that height is one of the most
influential features when it comes to process duration. Higher products have more layers, requiring a longer process
time to be completed. Conversely, a decrease in height would yield a reduction in process duration.

‘Quality by design of optimum parameter to minimise the weight of plastic products’ (Hartono et al. 2021): Similar to
the influence of height on process duration, it can be said that heavier stainless-steel products typically require
more material and may undergo more extensive processing steps, leading to longer process durations. Additionally,
achieving precise dimensions and structural integrity in heavier products might need slower processing speeds or
more intricate machining operations, which naturally extend the duration of the manufacturing process.
Furthermore, heavier products may require additional handling, setup, or transportation time during
manufacturing, all of which contribute to increased process duration.

‘Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser
deposited 316L stainless steel’ (Yadollahi et al. 2015): The researchers of this study focussed on a specific 3D printing
method called Direct Laser Deposition (DLD). They found that altering the time between layer additions
significantly influences both the microstructure and mechanical properties of the produced parts. Longer intervals
between layers result in quicker cooling, leading to stronger but less flexible parts, while shorter intervals yield
slower cooling and weaker but more flexible parts. This suggests a positive and direct correlation between heat
treatment and process duration. However, it is important to note that this study assesses only DLD, so the findings
might be limited regarding general stainless-steel manufacturing.

Note: Missing values (') indicate cases where the variable showed no detectable causal effect on the treatment in the estimation process.

product dimensions and weight. DirectLiNGAM can also
identify causal directions based on higher-order statis-
tics, outperforming algorithms reliant only on second-
order statistics (e.g. correlation) (Xie et al. 2019). It
is suitable for high-dimensional datasets that are not
extremely large, like our dataset, given its computational
requirements (Shahbazinia, Salehkaleybar, and Hashemi
2023).

We also selected the RESIT algorithm for comparison
due to its capability to model complex, nonlinear causal
relationships through non-parametric regression tech-
niques (Peters et al. 2014). This capability is particularly
advantageous for our dataset, which includes nonlinear
associations, such as between weight and power con-
sumption. Additionally, RESIT is well-suited for datasets

comprising continuous variables, aligning with the pre-
dominantly continuous nature of our data. The following
sections elaborate on both algorithms.

6.3.1. DirectLiNGAM

DirectLINGAM (Direct Linear Non-Gaussian Acyclic
Model) is an extension of the LINGAM framework
that directly estimates causal ordering, enhancing com-
putational efficiency in identifying causal relationships
(Shimizu et al. 2011). It assumes linear dependencies
between variables and non-Gaussian noise, focussing
on direct causal effects, which improves performance
in datasets dominated by such effects (Shimizu and
Kawano 2022).



The structural equation for DirectLINGAM is repre-
sented as:

Xi = Z b,’jx]' + ¢ (5)
k(j) <k(i)
or equivalently,
x=Bx+e. (6)

Here, x; is modelled as a weighted sum of its direct causes
xj, with coefficients b;j, while e; represents independent
non-Gaussian noise.

6.3.2. RESIT

RESIT (Regression with Subsequent Independence Test)
is an estimation algorithm tailored for Additive Noise
Models (ANMs) (Hoyer et al. 2009). Unlike Direct
LiNGAM, which assumes linear dependencies, RESIT
accommodates nonlinear causal relationships, making
it more flexible in handling complex interactions. The
method assumes an acyclic graph structure and the
absence of hidden confounders.

The mathematical model of RESIT is expressed as:

xi = fi(pa(x;)) + e;. (7)

In this equation, f; is a potentially nonlinear function, and
pa(x;) denotes the set of parent variables. The error terms
e; are independent, ensuring no hidden confounding
variables exist. This independence allows RESIT to iden-
tify nonlinear causal relationships effectively, capturing
complex interactions while accounting for stochastic
noise.

In this study, DirectLINGAM is applied to detect
direct linear effects in energy consumption and process
duration, while RESIT expands the analysis by exploring
potential nonlinear dynamics in the data. Together, these
methods provide a comprehensive approach to causal
discovery, accommodating both linear and nonlinear
relationships.

We conducted a sensitivity analysis to assess the
robustness of results to key modelling assumptions.
First, the assumption of linearity was tested by compar-
ing DirectLiNGAM with RESIT, which accommodates
nonlinear functions. RESIT identified additional causal
links, especially those involving product dimensions,
underscoring the need for flexible modelling. Second,
changing the input dataset (e.g. analysing a different
production station or including additional product cat-
egories) led to variations in the inferred edges, par-
ticularly for weight- and heat treatment-related links.
Finally, algorithm parameters such as the independence
test threshold in RESIT affected the stability of weaker
edges. These results suggest that while strong causal rela-
tionships are stable across conditions, more subtle links
require careful tuning and validation.
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6.4. Causal graph evaluation

In Section 6.1, we introduced a manually created causal
graph as a reference for evaluating the results of
DirectLiNGAM and RESIT (cf. Figure 1, Step 8). This
evaluation is based on the comparison of identified causal
relationships using the following definitions:

o True Positive (TP): An edge estimated with the correct
direction, matching the manual causal graph.

e False Positive (FP): An edge present in the generated
graph but not in the manual causal graph.

e False Negative (FN): An edge present in the manual
causal graph but missing in the generated graph.

e Reverse: An edge estimated with a reversed direction
compared to the manual causal graph.

e True Negative (TN): An edge absent in both the gener-
ated and manual causal graphs.

Evaluating causal discovery methods requires com-
paring the generated causal graphs against a known
ground truth or the reference graph. To quantify the
accuracy and reliability of the inferred relationships, we
use multiple performance metrics. These metrics assess
the correctness of detected edges, the rate of false dis-
coveries, and the structural differences between the esti-
mated and reference graphs. They help determine the
effectiveness of causal inference techniques in captur-
ing meaningful dependencies and provide insights into
potential improvements. The following subsections out-
line the key evaluation criteria used in this study.

False discovery rate in causal discovery (FDR). The
False Discovery Rate (FDR) is a statistical metric that
quantifies the proportion of incorrect causal relationships
(false positives and reversed edges) among all identi-
fied interactions. It is commonly used to assess the reli-
ability of causal discovery algorithms (Benjamini and
Hochberg 1995):

FDR — Reverse + FP‘ ®)
TP + FP

Precision and recall in causal detection. Precision and
recall metrics across stations reveal consistent patterns:

. TP TP
Precision = ———, Recall= ——. (9)
TP + FP TP + FN

F1 score for balanced causal accuracy. The F1 score pro-
vides a balanced measure of precision and recall:

Recall x Precision
F1 =2 x —. (10)
Recall + Precision
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Structural hamming distance (SHD). The Structural Ham-
ming Distance (SHD) measures the structural differences
between the generated and the manual causal graph. It
accounts for extra edges, missing edges, and reversed
edges Tsamardinos, Brown, and Aliferis (2006):

SHD = extra edges + missing edges
+ reversed edges. (11)

Structural intervention distance (SID). Structural Inter-
vention Distance (SID) evaluates the accuracy of pre-
dicted intervention effects by comparing the intervention
distributions of the generated and the manual causal
graph. It is used to assess the fidelity of causal predic-
tions Peters and Bithlmann (2015). Unlike standard met-
rics that only compare graph structures, SID evaluates
the accuracy of causal relationships by considering how
interventions on one variable affect others. A lower SID
value indicates that the learned graph closely matches
the true causal structure in terms of intervention effects.
Mathematically, SID is defined as:

SID(G, G) = D" |Z(G, ) AL(G, i), (12)
ieV

where Z(G,i) and 7 (G, i) represent the sets of affected
variables when intervening on node i in the true graph G
and the estimated graph G, respectively. SID helps assess
whether a causal model can make reliable predictions
under interventions.

6.5. Causal inference

This subsection discusses the process of causal infer-
ence. It focuses on the identification and estimation of
causal effects using a structured framework grounded
in DoWhy and causal graph modelling. It begins by
detailing various criteria for identifying causal estimands,
including the back-door, front-door, instrumental vari-
ables (IV), and mediation methods, each tailored to
address specific challenges such as confounding and hid-
den variables. The discussion highlights the rationale for
selecting these approaches and their application to energy
consumption and process duration data. Subsequently,
the subsection covers the estimation of causal effects
based on identified estimands, emphasising the back-
door criterion as the primary method used in this study.
Comparative results from different causal graph models
(DirectLINGAM, RESIT, and a manually created graph)
are presented to assess the robustness of the findings. This
comprehensive exploration offers a structured approach
to understanding cause-and-effect relationships.

6.5.1. Identifying causal estimand

Identifying the causal estimand is a critical step in causal
inference that defines the mathematical expression used
to estimate the causal effect of a treatment (or interven-
tion) on an outcome (cf. Figure 1, Step 10). This step
ensures that the causal effect is properly formulated based
on the causal assumptions encoded in the causal graph
(van Geloven et al. 2020). DoWhy forms the basis of our
causal inference framework by utilising a causal graph to
estimate desired causal effects, combining graph-based
criteria and do-calculus (Sharma and Kiciman 2020).
This framework enables us to identify key features that
influence outcome variables through several methods,
including the back-door criterion, front-door criterion,
instrumental variables (IV), and mediation methods. The
objective is to isolate the treatment effect on the out-
come, focussing specifically on factors impacting energy
consumption and process duration.

The causal graph used in this study provides a struc-
tural basis to identify cause-and-effect pathways, sup-
porting precise estimations discussed later in
Section 6.5.2. This step aligns with Steps 10-11 in Figure
1, guiding the process of selecting relevant estimands and
conditioning variables.

The back-door criterion addresses confounding by
identifying covariates that block all back-door paths
between treatment and outcome, ensuring unbiased
estimation by controlling for confounders (Pearce and
Lawlor 2016). It identifies causal effects by controlling
for confounding variables Z that influence both the cause
X and the outcome Y. If these confounders are not
accounted for, the estimated effect may be biased due
to hidden influences. The criterion ensures that all non-
causal pathways (back-door paths) between X and Y
are blocked, allowing for an unbiased estimation of the
causal effect (Sucar 2021). When the back-door criterion
is satisfied, the causal effect can be computed using the
adjustment formula:

P(Y |do(X)) = ZP(Y|X, Z)P(2). (13)
Z

By using this method, we can isolate the true impact of X
on Y, avoiding misleading correlations and making more
reliable decisions based on causal relationships.

The front-door criterion applies when confounding
between the cause X and the outcome Y cannot be
directly controlled. It works by using an intermediate
variable M (a mediator) that is affected by X and, in
turn, influences Y (Bellemare, Bloem, and Wexler 2024).
This approach allows us to estimate the causal effect of X
on Y even when unmeasured confounders exist. When
the front-door criterion is satisfied, the causal effect is



computed using the adjustment formula:

P(Y |do(X)) = D> P(M|X) D P(Y|M,X). (14)
M Y

By applying this method, we can still derive valid causal
conclusions in situations where direct confounding can-
not be adjusted.

Instrumental variables (IV) address unobserved con-
founding by leveraging variables that influence the treat-
ment but have no direct effect on the outcome, allowing
for an isolated variation in treatment. This approach was
used to validate causal effects when hidden confounders
were present (Angrist, Imbens, and Rubin 1996). An IV
is a variable Z that affects the treatment X but has no
direct influence on the outcome Y except through X. This
helps isolate the variation in X that is free from confound-
ing, allowing for an unbiased estimate of the causal effect.
When a valid instrument is found, the causal effect of X
on Y can be estimated using the following expression:

_ Cov(Z,Y)

p= Cov(Z,X)’

(15)

where f represents the causal effect of X on Y, and
Cov(A, B) denotes the covariance between variables A
and B. This method is essential in cases where tra-
ditional approaches, such as back-door or front-door
adjustments, fail due to unmeasured confounding.

Mediation analysis explores causal pathways by iden-
tifying intermediate variables that mediate treatment
effects on outcomes, decomposing the total causal effect
into direct and indirect components to reveal nuanced
causal pathways.

6.5.2. Causal estimation
Causal estimation quantifies the effect of treatment vari-
ables on target outcomes based on the previously iden-
tified estimands (cf. Figure 1, Step 11). Using non-
parametric confidence intervals and permutation tests,
we assessed statistical significance with techniques like
the back-door criterion and instrumental variables. In
the previous step, all back-door paths were blocked,
enabling us to estimate the causal effects of treatment
variables on target variables. We employed back-door lin-
ear regression for estimation, selected for its suitability
with continuous outcome variables. Our target unit was
the average treatment effect (ATE), providing an estimate
of causal impact across the population (Heiss 2024).
Back-door linear regression is used to estimate
causal effects when confounding variables influence both
the treatment X and the outcome Y (Maathuis and
Colombo 2015). By controlling for these confounders Z,
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it ensures that the estimated relationship reflects causa-
tion rather than mere correlation. This is done by adjust-
ing for Z in a regression model, isolating the true effect of
X on Y. The causal effect is estimated using the following
linear regression model:

Y=o+ X+ PZ+e, (16)

where f) represents the causal effect of X on Y, while S,
accounts for the confounding variable Z.

6.5.3. Causal refutation
Rigorous refutation tests were conducted to validate
causal relationships and ensure the robustness of our
causal hypotheses, corresponding to Step 12 in Figure 1.
Causal refutation in this context involves testing causal
hypotheses with statistical evidence, aiming to challenge
their validity. When the probability of obtaining results
under the null hypothesis is low (e.g. p-value < 0.05), we
can reject it in favour of the alternative hypothesis. This
study applied three refutation methods — Placebo Treat-
ment, Random Common Cause, and Subset Data — as part
of a sensitivity analysis to assess model robustness against
potential violations of these hypotheses.

e Placebo Treatment: This test replaces the treatment
variable X with an independent random variable X*
called placebo that has no real effect on the outcome
Y (Antonaci et al. 2007). This approach verifies that
detected causal effects are not spurious. A significant
effect would suggest noise or non-causal relationships.
If the model still detects a significant causal effect
between X* and Y, it suggests that the original esti-
mation may be unreliable. Mathematically, this test
checks whether:

P(Y | do(X*)) ~ P(Y). (17)

If replacing X with X* does not change the outcome
distribution, the original causal estimate is likely valid.
This test is essential for ensuring that findings are not
driven by spurious correlations and that the causal
relationships identified are truly meaningful.

e Random Common Cause: This test introduces a ran-
dom variable U* as a common cause between treat-
ment X and outcome Y. Stability in causal effect esti-
mates in the presence of this confounder indicates
robustness against spurious relationships. If adding
U* significantly changes the estimated causal effect, it
suggests that the model is sensitive to unobserved con-
founding and may not be reliable. Mathematically, this
test evaluates whether:

P(Y | do(X), U*) ~ P(Y | do(X)). (18)
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Figure 4. Comparison of causal graphs generated by DirectLiNGAM and RESIT using the power consumption dataset for worksta-
tion 50513. Each graph represents inferred causal relationships among production features influencing energy usage. (a) Causal graph

generated by DirectLiNGAM. (b) Causal graph generated by RESIT.

If the causal estimate remains stable after including
U*, the model is likely robust. This test is crucial
for assessing whether hidden biases could be affect-
ing causal conclusions and ensuring that the estimated
effects are not artifacts of missing confounders.

e Subset Data: This test re-estimates the causal effect
on a randomly selected subset of the original data
(i.e. a smaller sample drawn from the same dataset).
Consistent effects across subsets suggest generalizabil-
ity and robustness, while significant changes could
imply overfitting. Mathematically, this test evaluates
whether:

P(Y | do(X),D*) ~ P(Y |do(X),D),  (19)

where D* is a random subset of the full dataset D. If the
causal estimate remains stable across different subsets,
the model is more likely to be robust. This test is essen-
tial for ensuring that findings are generalisable and not
overly dependent on specific data points.

7. Results and discussion

To contextualise the following analysis, we restate the two
research questions that guided this study:

e RQ1: Which process and product parameters causally
influence energy consumption and process duration
in customised manufacturing?

e RQ2: How can causal Al be used to support inter-
pretable, data-driven decision-making in energy-
intensive production settings?

7.1. Analysis of causal discovery results

Causal discovery techniques, specifically DirectLINGAM
for linear relationships and RESIT for nonlinear ones,

were applied to generate causal graphs, corresponding
to Step 7 in Figure 1. DirectLiNGAM and RESIT were
applied to data from all observed workstations. For
brevity, only the causal graph for workstation 50513 is
presented here, with models for each workstation ID
provided in the appendix (cf. Section 2).

In DirectLiNGAM-generated graphs, edges also
reflect the magnitude of relationships based on the adja-
cency matrix. By contrast, RESIT graphs display an edge,
marked with a value of 1, only when a correlation is
detected; the absence of an edge indicates no identi-
fied interaction. The interpretation of results from these
causal discovery models is shown in Figures 4 and 5, with
further details provided in Appendix 2.

The generated causal graphs were then compared with
the manually created graph to refine the model (Step 9 in
Figure 1), ensuring alignment with domain knowledge.
This alignment is essential for producing an accurate
causal graph, which is critical for reliable causal inference.

To address RQ1, this section identifies the production
features - such as weight, outer diameter, and heat treat-
ment — that exhibit causal influence on energy consump-
tion and process duration, as revealed by the discovered
causal structures.

Table 6 provides an evaluation of causal discov-
ery performance across different workstations using
DirectLiNGAM and RESIT algorithms by employing the
metrics discussed in in Section 6.4.

As shown in Table 7 and illustrated in Figure 6,
DirectLINGAM demonstrates consistently higher recall
and F1 scores, suggesting a stronger ability to detect valid
causal relationships than RESIT. RESIT, while achiev-
ing comparable precision, exhibits a higher false discov-
ery rate (FDR), indicating more conservative but less
complete identification of causal edges. This comparison
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Figure 5. Comparison of causal graphs generated by DirectLiNGAM and RESIT using the process duration dataset for workstation 50513.
The graphs illustrate inferred causal relationships among production features that impact process timing. (a) Causal graph generated by

DirectLiNGAM. (b) Causal graph generated by RESIT.

Table 6. Evaluation metrics for causal discovery algorithms across workstations.

Basic metrics

Derived metrics

Station Dataset Algorithm TP FP FN Rev. Prec. Rec. SHD SID FDR F1
50513 Power DirectLiNGAM 6 6 4 0 0.50 0.60 10 8 0.50 0.54
RESIT 3 5 3 1 0.38 0.50 9 10 1.00 0.43
Process DirectLiNGAM 7 6 4 0 0.54 0.64 10 9 0.46 0.58
RESIT 3 5 3 1 0.38 0.50 9 1 1.00 0.43
50514 Power DirectLiNGAM 5 7 5 1 0.42 0.50 13 15 0.62 0.45
RESIT 4 6 4 2 0.40 0.50 12 16 0.67 0.44
Process DirectLiNGAM 6 5 4 1 0.55 0.60 10 12 0.55 0.57
RESIT 4 1 6 2 0.27 0.40 19 20 0.87 0.32
50516 Power DirectLiNGAM 5 8 5 1 0.38 0.50 14 17 0.64 0.43
RESIT 4 6 4 2 0.40 0.50 12 18 0.67 0.44
Process DirectLiNGAM 4 5 6 1 0.44 0.40 12 14 0.60 0.41
RESIT 5 7 5 2 0.42 0.50 14 16 0.69 0.45
Average 475 6.38 438 1.00 0.42 0.52 11.75 13.00 0.68 0.46

Table 7. Summary of average performance metrics (precision,
recall, and F1 score) for causal discovery across all production
stations.

Algorithm Precision Recall F1 Score
DirectLiNGAM 0.48 0.58 0.52
RESIT 0.45 0.46 0.45

Note: The values compare the performance of DirectLiNGAM and RESIT in
detecting correct causal relationships, based on the evaluation framework
described in the section on causal graph evaluation.

highlights the trade-offs between the two methods and
supports the selection of DirectLiNGAM for broader
coverage in causal discovery.

In terms of basic metrics, DirectLINGAM generally
detects more TP causal edges compared to RESIT, sug-
gesting a stronger ability to recover correct causal rela-
tionships. However, it also tends to produce a higher
number of FP, which reduces its precision. RESIT, on the
other hand, has fewer false positives but struggles with

higher FN, indicating that it may be more conservative
in detecting causal edges. The presence of reversed edges
(Rev.) is relatively low across all stations, but RESIT
exhibits slightly more reversals, implying that its causal
direction inference is somewhat less reliable.

Table 6 shows that DirectLiNGAM maintains an aver-
age FDR of 0.54, while RESIT shows a higher average
FDR of 0.67. Station 50514 exhibits the highest FDR
values for both algorithms, particularly in the Process
Duration Dataset, indicating more challenging causal
relationships at this station. DirectLINGAM also demon-
strates higher average recall (0.58) compared to RESIT
(0.46), indicating broader coverage of true causal rela-
tionships. Precision values are comparable between algo-
rithms (DirectLiNGAM: 0.48, RESIT: 0.45), suggest-
ing similar rates of false positive identification. Thus,
DirectLiNGAM’s higher recall suggests it is more reli-
able for capturing true causal effects across the sta-
tions. DirectLiNGAM achieves consistently higher F1
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Figure 6. Comparison of average performance metrics (FDR, Precision, Recall, and F1 Score) across DirectLiNGAM and RESIT.

scores across stations (average 0.52) compared to RESIT
(average 0.45). Station 50513 shows the highest F1 scores
for both algorithms, suggesting clearer causal relation-
ships at this station. This indicates DirectLINGAM’s rela-
tive robustness in producing a balanced causal discovery.
DirectLiNGAM has an average SHD of 10.8, indicating
a closer structural match to the true graph compared to
RESIT, with a higher average SHD of 11.6. The highest
SHD values for both algorithms occur at Station 50514,
reinforcing the complexity of causal relationships at this
station.

The analysis reveals that DirectLINGAM consistently
outperforms RESIT in terms of recall, F1 score, and struc-
tural fidelity (SHD), making it more reliable for uncov-
ering true causal relationships across the workstations.
Specifically, DirectLiNGAM achieved an average recall of
0.58 and F1 score 0f 0.52, compared to RESIT’s 0.46 recall
and 0.45 F1 score. Additionally, DirectLINGAM demon-
strated a closer structural match to the manual causal
graph, with an average SHD of 10.8, compared to RESIT’s
11.6.

Station-specific differences were observed, with Sta-
tion 50513 displaying the clearest causal relationships, as
reflected by the highest F1 scores for both algorithms. In
contrast, Station 50514 posed greater challenges, show-
ing the highest SHD and FDR values, likely due to the
complexity of its causal relationships.

These findings underscore the importance of selecting
causal discovery algorithms based on the specific require-
ments of the application, such as prioritising structural
accuracy or intervention fidelity.

7.2. Analysis of causal inference results

7.2.1. Causal estimand identification results

For this study’s dataset, the causal estimand identification
techniques discussed in Section 6.5.1 were employed. The
back-door criterion was primarily used. However, five
cases within the process duration dataset required I'Vs or
the front-door criterion to strengthen causal estimates.
DoWhy was applied to three types of causal graphs: the
manually created graph, DirectLINGAM, and RESIT. The
results from each graph are compared in Section 7 to
assess the consistency and robustness of identified causal
relationships.

Table 8 illustrates an example where back-door, front-
door, and IV criteria all identified estimands for the effect
of weight on process duration, increasing confidence in
the estimated effect and validating the causal assump-
tions. This example derives from the DirectLINGAM
graph for workstation 50513.

For example, our back-door linear regression revealed
that a 1 mm increase in outer diameter causally leads
to a 0.42kWh increase in power consumption (station
50516), while weight increases also showed significant
impacts on both power and duration across stations.
These quantified effect sizes help prioritise interventions
for energy efliciency.

The results in Table 8 confirm that the causal effect
of weight on process duration is consistently identified
using three different causal inference techniques: the
back-door criterion, instrumental variables (IV), and the
front-door criterion. The back-door criterion ensures
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Table 8. Example of three causal identification strategies applied to estimate the effect of weight on process duration.

Estimand type:

EstimandType.NONPARAMETRIC_ATE

Estimand: backdoor

d
Estimand expression: -
P dlweight_S]

Estimand assumption 1,
Unconfoundedness:
Estimand: iv

Estimand expression:

(Elduration_seconds_S])

If U — {weight_S}and U — duration_seconds_S then
P(duration_seconds_S|weight_S, U) = P(duration_seconds_S|weight_S)

Estimand assumption 1, As-if-random:
Estimand assumption 2, Exclusion:

d p d -
d[heattreatmentcategory_id_S] dweight_S]
If U —>— duration_seconds_S then —(U — — {heattreatmentcategory_id_S})
If we remove {heattreatmentcategory_id_S} — {weight_S} then

—({heattreatmentcategory_id_S} — duration_seconds_S)

Estimand: frontdoor

Estimand expression: [

Estimand assumption 1, Full-mediation:

Estimand assumption 2,
First-stage-unconfoundedness:

0
dlinner_diameter_S height_S outer_diameter_|_S] (E |:8weight_S ])j|
inner_diameter_S, height_S, outer_diameter_|_S intercepts (blocks) all directed paths from weight_S to
duration_seconds_S.
If U — {weight_S}and U — {inner_diameter_S, height_S, outer_diameter_|_S} then
P(inner_diameter_S, height_S, outer_diameter_|_S|weight_S, U) =

P(inner_diameter_S, height_S, outer_diameter_|_S|weight_S)

Estimand assumption 3,
Second-stage-unconfoundedness:

If U — {inner_diameter_S, height_S, outer_diameter_|_S} and U — duration_seconds_Sthen
P(duration_seconds_S | inner_diameter_S, height_S,outer_diameter_|_S, weight_S, U) =

P(duration_seconds_S | inner_diameter_S, height_S,outer_diameter_|_S, weight_S)

Note: The table summarises backdoor, instrumental variable (IV), and frontdoor estimands, including their expressions and identification assumptions. These
formulations demonstrate different pathways for identifying causal effects under varying conditions of confounding and mediation.

that all confounding influences are controlled, leading to
an unbiased estimation of the effect of weight on process
duration. The IV approach leverages heat treatment cat-
egory as an instrument, allowing estimation even in the
presence of unobserved confounders. The front-door cri-
terion, using intermediate variables such as inner diam-
eter, height, and outer diameter, further validates the
causal effect by decomposing indirect influences. The
agreement across these three methods increases con-
fidence in the causal relationship and strengthens the
robustness of the identified estimand, reinforcing the
validity of the assumptions underlying the causal graph.
These multi-method estimand results further support
RQ1, confirming which features (e.g. weight, outer diam-
eter) have consistent and robust causal effects across
models and inference strategies.

7.2.2. Causal estimation results
Table 9 displays the average estimated effect of each fea-
ture on the dependent variables - power consumption
and process duration, after applying the causal estima-
tion method described in Section 6.5.2. For example,
both manual graph, DirectLiNGAM and RESIT, indi-
cate that a one-unit increase in heat treatment results
in an approximate 0.5 kWh decrease in power consump-
tion, suggesting a weak negative relationship. Additional
results are available in the appendix (cf. Section 3).
Table 9 provides insights into the estimated causal
effects of various features on power consumption and
process duration for workstation ID 50513. The estimates
obtained from DirectLiNGAM, RESIT, and the manual

Table 9. Mean causal effect estimates for production features in
the power consumption and process duration datasets at work-
place ID 50513.

Manual

Dataset Feature DirectLliNGAM  RESIT ~ model
Power consumption  Heat treatment —0.52 —0.58 —0.24
Weight —4.70 0 —1.85

Height —0.24 —1.86 —11.35

Outer Diameter 0 —0.04 0.71

Process duration Heat treatment —0.25 —0.25 —0.23
Weight —0.12 —0.088 0.08

Height 0.03 0.02 —0.05

Outer Diameter 0.05 —0.21 —0.03

Inner Diameter 0.03 0.08 0.03

Note: Results are presented for three causal models: DirectLiNGAM, RESIT, and
a manually constructed reference model. The estimates reflect the aver-
age influence of each feature on the respective outcome variable, allowing
comparison across methods.

causal model generally exhibit consistency, reinforcing
confidence in the identified relationships. For power
consumption, heat treatment consistently shows a weak
negative effect across all models, with values ranging
from —0.24 to —0.58, indicating that an increase in heat
treatment slightly reduces power consumption. Weight
exhibits a strong negative effect in the DirectLINGAM
and manual models but is absent in the RESIT model,
suggesting potential variability in its influence. Height
demonstrates significant variability, with the manual
model indicating a much larger negative impact (—11.35)
compared to the other models. Outer diameter, on the
other hand, has a negligible effect on power consumption
across all models.
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Table 10. Causal effect estimates for power consumption at
workplace ID 50513 under different robustness conditions.

Table 11. P-values corresponding to causal effect estimates in
Table 10 for workplace ID 50513.

Method Method
Variable DirectLiINGAM RESIT Manual model Variable DirectLiNGAM RESIT Manual model
Placebo treatment Placebo Treatment
Heat Treatment 0.04 —0.08 0.02 Heat Treatment 0.35 0.35 0.42
Weight —0.02 - —0.01 Weight 0.45 - 0.48
Height 0.03 0.03 —0.003 Height 0.43 0.47 0.49
Outer Diameter - —0.02 —0.02 Outer Diameter - - 0.41
Random common cause Random Common Cause
Heat Treatment —0.52 —0.58 0.01 Heat Treatment 0.96 0.96 1.0
Weight —4.70 - —5.68 Weight 0.98 - 0.92
Height —0.24 —1.86 —2.23 Height 0.9 0.86 0.74
Outer Diameter - —0.04 0.62 Outer Diameter - 0.48 1.0
Subset data Subset Data
Heat Treatment —0.52 —0.57 0.007 Heat Treatment 0.98 0.98 0.96
Weight —4.69 - —5.65 Weight 0.92 - 0.92
Height —0.23 —1.88 —2.24 Height 0.88 0.82 0.96
Outer Diameter - —0.01 0.61 Outer Diameter - 0.8 0.96

Note: The table presents estimated causal effects from three methods
(DirectLiNGAM, RESIT, Manual Model) across placebo treatment, random
common cause injection, and data subset conditions. These checks assess
the sensitivity and reliability of inferred relationships between selected fea-
tures and energy usage.

For process duration, heat treatment maintains a
weak negative relationship, implying a slight reduction
in duration as heat treatment increases. The impact of
weight is inconsistent across models, with the manual
model suggesting a small positive effect (0.08), while
DirectLiNGAM and RESIT estimate negative effects.
Height, outer diameter, and inner diameter show min-
imal effects on process duration, with slight variations
across models. The differences in estimates highlight the
sensitivity of causal estimation methods and suggest that
while certain relationships remain stable (such as heat
treatment’s effect on power consumption), others may
require further investigation to ensure robustness.

7.2.3. Causal refutation results

By applying causal refutation methods discussed in
Section 6.5.3, this study tests the stability and sensitiv-
ity of estimated causal effects. Table 10 displays estimated
effect changes for each refutation method, indicating
how each model (DirectLINGAM, RESIT, and Manual
Causal Graph) responds to refutation. Table 11 pro-
vides corresponding p-values; values above 0.05 suggest
non-significant changes, supporting the robustness of the
original causal hypotheses.

Specifically, Table 10 shows estimated causal effects
for variables (e.g. Heat Treatment, Weight) on the Power
Consumption Dataset for Workplace ID 50513. The
observed changes reveal the model’s sensitivity, with
minor changes indicating robustness and larger changes
indicating potential overfitting. Table 11 presents the p-
values for each refutation test. Most p-values exceed 0.05,

Note: P-values are reported for placebo treatment, random common cause
injection, and subset data scenarios. These values indicate the statistical
significance of estimated effects under different robustness checks.

indicating non-significant changes and further support-
ing the robustness of the inferred causal hypotheses in
this study.

The results of the causal refutation tests in Tables 10
and 11 demonstrate the robustness of the estimated
causal effects for power consumption in workstation ID
50513. The placebo test results show minor deviations in
estimated causal effects when the actual treatment vari-
able is replaced with a random variable, with changes
remaining small across all models. This suggests that the
estimated effects are unlikely to be driven by random
noise or model bias. Additionally, the p-values for the
placebo test exceed 0.35 in all cases, further confirm-
ing that the detected causal relationships are not due to
spurious correlations.

The random common cause and subset data tests
provide additional validation for model robustness. The
introduction of a random confounder does not signif-
icantly alter the causal effect estimates, indicating that
unmeasured confounding has minimal impact on the
results. Similarly, the subset data test confirms that the
causal estimates remain stable even when using a ran-
dom portion of the dataset, suggesting that the findings
are not overly sensitive to specific data points. High p-
values (above 0.74 for most variables) reinforce this con-
clusion, demonstrating that the inferred causal effects
are consistent and not overfitted. These results collec-
tively strengthen confidence in the validity of the causal
relationships.

7.2.4. Summary of causal inference results
The causal effect of product properties on process dura-
tion and power consumption in manufacturing was
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Causal Estimation for Workplace ID 50513
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Figure 7. Estimated causal effect using DoWhy for workstation 50513. The diagram illustrates the inferred causal pathways between
production features and energy consumption, supporting interpretability of the causal relationships derived from observational data.

generally low in magnitude but exhibited consistent
trends across the manual causal graph and the automat-
ically generated graphs by RESIT and DirectLINGAM.
Discrepancies between the manual and generated graphs
are primarily due to the manual graph’s lack of dif-
ferentiation between workplace IDs. Different worksta-
tions manufacture unrelated products, leading to varying
influences of product features on the target variables.
For the automatic models, the outer diameter variable
showed the most significant range among workstations:
0 in workstations 50513 and 50514, compared to 88.97
in workstation 50516, suggesting that workstation 50516
operates a more energy-intensive process. In the Pro-
cess Duration Dataset, the variation was less extreme,
but the heat treatment category displayed distinct effects:
positive in workstation 50513, negative in workstation
50514, and no effect in workstation 50516. These varia-
tions underscore the influence of specific manufacturing
environments and the need to optimise product design
for these diverse settings.

The most influential features for the Power Consump-
tion Dataset are weight and outer diameter. Weight has
a significant positive effect in workstations 50514 and
50516, indicating that heavier components may require
additional energy. The outer diameter also consistently
impacts power consumption, especially in workstation
50516, suggesting that products with larger diameters
consume more energy due to increased surface area.
In contrast, process duration is less affected by product
characteristics, though outer diameter and heat treat-
ment category show some impact. For instance, outer
diameter has a noticeable positive effect, particularly
in workstation 50514, with values of 0.36 and 0.39
in RESIT and the manual model, respectively. Despite
varying impacts across workstations, the heat treat-
ment category’s effect on process duration highlights the
importance of optimising this parameter for production
efficiency.

Figure 7 shows the causal estimation results for work-
station 50513, highlighting the specific causal relation-
ships identified in this environment. Results for the other
workstations are provided in Appendix 3.

Following the causal refutation analysis, it is evi-
dent that both DirectLiNGAM and RESIT generate sta-
ble causal graphs, demonstrating robustness in esti-
mating relationships across refutation tests, with all
models yielding p-values over 0.05 (Sharma and Kici-
man 2020). Despite testing several refutation methods,
the new estimates showed negligible changes, particularly
in the ‘Random Common Cause’ and ‘Subset Data’ tech-
niques. The most noticeable variations appeared with the
placebo refuter, indicating model sensitivity to treatment
variables with no actual effect. However, these minor
fluctuations did not significantly affect model stability,
underscoring robustness.

The reliability of these generated graphs is crucial
for decision-making, as it enables manufacturers to con-
fidently identify influential factors within the process.
Through causal modelling, manufacturers can imple-
ment targeted interventions to optimise efficiency, reduce
costs, and improve productivity.

Our findings both align with and extend previous
research in several key areas. Regarding power con-
sumption relationships, our findings on weight and outer
diameter’s impact align with several studies. Redelbach,
Klotzke, and Friedrich (2012) reported that component
weight significantly influences energy consumption in
manufacturing processes, with a correlation strength of
0.65-0.75, similar to our observed effects in workstations
50514 and 50516. However, while Tangthieng (2011)
found a consistent linear relationship between outer
diameter and power consumption across all processing
stations, our results show this relationship varies signifi-
cantly by workstation (ranging from 0 to 88.97).

The varying impact of heat treatment across work-
stations (positive in 50513, negative in 50514, none in
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50516) presents an interesting contrast to Mbanyeude
(2023)’s findings, which reported consistent positive cor-
relations between heat treatment parameters and energy
consumption. This discrepancy might be attributed to
our station-specific analysis approach, whereas previous
studies often aggregated data across processing units.

Our finding that process duration is less influenced
by product characteristics than power consumption con-
trasts with several studies. Hartono et al. (2021) found
strong correlations between product features and pro-
cessing time R? > 0.8, while our results show weaker
relationships. This difference might be explained by Gao
et al. (2017)’s observation that modern manufacturing
systems often have optimised process timing that reduces
the impact of product variations.

According to Priarone et al. (2016), product charac-
teristics and process parameters influence both power
consumption and process duration, creating a trade-off
between quality, efficiency, and sustainability. However,
our findings suggest that process duration is less affected
by product feature variation. This indicates that man-
ufacturers may achieve greater efficiency by prioritis-
ing power consumption over balancing it with duration.
Based on causal estimation results, this strategy may yield
a slight increase in process time but lead to substantial
energy savings. In energy-intensive sectors like stainless
steel manufacturing, this approach provides significant
economic and environmental benefits, offering a strategic
advantage.

The consistency between our findings and existing lit-
erature on factors such as weight, outer diameter, and
heat treatment (Mbanyeude 2023; Redelbach, Klotzke,
and Friedrich 2012; Tangthieng 2011) strengthens the
validity of our conclusions, while our station-specific
analysis provides new insights into how these relation-
ships vary across different manufacturing environments.
These findings suggest that future optimisation strate-
gies should consider workplace-specific variations rather
than applying uniform approaches across all processing
stations.

7.3. Advantages of causal Al compared to
traditional machine learning

The causal Al-based approach applied in this study
demonstrates several key advantages over traditional
machine learning models, particularly in terms of trans-
parency, interpretability, and robustness in decision-
making. In traditional machine learning methods, such
as linear regression, random forests, or neural networks,
models tend to focus on correlations to predict outcomes
without explicitly revealing how product features inter-
act with process variables. This can be problematic in the

manufacturing domain, where understanding the causal
effect of product characteristics is crucial for optimising
processes.

o Transparency and Interpretability: The causal Al mod-
els used in this study, such as DirectLiNGAM and
RESIT, provide interpretable causal graphs that allow
manufacturers to directly observe how product fea-
tures, such as outer diameter and weight, influence
power consumption and process duration. For exam-
ple, outer diameter consistently showed a significant
positive causal effect on power consumption, partic-
ularly in workstation 50516, with RESIT estimating
a strong effect of 0.42. This level of interpretability
is not achievable with traditional machine learning
models, which treat feature importance as a byprod-
uct of prediction accuracy rather than direct causal
influence.

e Overcoming Black-Box Limitations: Traditional mod-
els like random forests and neural networks often
function as black boxes, giving little insight into why
certain features are deemed important. These models
would likely flag outer diameter and weight as signif-
icant for power consumption but would not provide
insights into their causal relationships. In contrast,
the causal Al approach identified outer diameter as a
direct cause of increased power consumption across
multiple workstations. Similarly, it was shown that
heat treatment categories have varying effects on pro-
cess duration depending on the workstation, which
traditional models might miss due to their focus on
correlation rather than causality.

e Reliability of Decision-Making: The robustness of the
causal models was verified through rigorous refuta-
tion tests. Both DirectLINGAM and RESIT passed all
refutation tests with p-values greater than 0.05, con-
firming that the identified causal relationships hold
across different test conditions. This stands in contrast
to traditional models, which might exhibit instabil-
ity when subjected to small data perturbations. The
stability of causal models ensures manufacturers can
trust the identified causal drivers, such as the outer
diameter’s effect on power consumption, for long-
term decision-making without concerns about model
reliability.

e Quantitative and Qualitative Improvements: When
comparing the causal Al models with traditional
machine learning methods, the case study revealed
several quantitative improvements. For instance, the
causal models provided specific numerical estimates
of how changes in product characteristics, like a 1 mm
increase in outer diameter, would lead to a 0.42 unit
increase in power consumption at workstation 50516.



Traditional models would likely identify outer diame-
ter as a key feature but without quantifying this direct
effect. Furthermore, qualitative improvements were
observed, such as understanding why heat treatment
had a positive effect on process duration in one work-
station but a negative effect in another. This level
of nuance and precision is difficult to achieve with
non-causal models.

In conclusion, while traditional machine learning
methods can offer high prediction accuracy, they lack the
transparency and causal insights required for optimising
manufacturing processes. The causal Al-based method-
ology used in this study not only identified critical factors
like outer diameter and heat treatment categories but
also quantified their causal effects on power consump-
tion and process duration. This provides manufactur-
ers with actionable insights that go beyond mere cor-
relations, enabling more informed, reliable, and precise
optimizations for reducing costs and improving process
efficiency.

7.4. Robustness and scalability of the causal Al
framework

The robustness of the proposed framework was demon-
strated through multiple evaluation layers, including
graph comparison with expert-validated ground truth,
causal effect refutation tests (Section 6.5.3), and metric-
based performance across multiple workstations. Specif-
ically, the consistent superiority of DirectLiNGAM in
terms of F1 score and SHD across three different sta-
tions (Table 6) shows its ability to capture meaningful
causal structures under diverse conditions. The causal
estimates remain stable across data perturbations and
confounding checksFurthermore, robustness was con-
firmed through causal refutation tests (Table 11), where
causal effect estimates remained stable under placebo,
random confounding, and data subset scenarios.

Scalability was evaluated by replicating the method-
ology across multiple workstations and two datasets
(power consumption and process duration). The modu-
lar design of the pipeline, which covers data preprocess-
ing, causal discovery, graph refinement, estimation, and
refutation, enables easy extension to additional work-
stations or even other domains. As the algorithms used
(DirectLiNGAM, RESIT, DoWhy) operate efficiently on
moderate-dimensional data, the approach can be scaled
horizontally to production lines with hundreds of sensors
or vertically to richer time-series data.

Furthermore, the consistent causal patterns across
independent workstations (e.g. outer diameter or weight
as main drivers of power consumption) demonstrate that
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the causal signals are not overfit to a single environment.
This repeatability indicates external validity and high-
lights the potential of the framework to be generalised
to other industrial settings, including energy-intensive
sectors such as automotive, chemicals, and logistics. Scal-
ability can also be achieved through integration with real-
time data collection systems, enabling continuous model
updates and adaptive causal inference.

7.5. Practical implementations, implications, and
industrial applications

This section addresses RQ2, demonstrating how the
causal insights gained from the analysis can inform
industrial decision-making and enable interpretable,
data-driven process optimisation.

The findings of this study demonstrate the poten-
tial of causal AI to uncover actionable insights for opti-
mising energy consumption and process durations in
the stainless-steel manufacturing industry. By identify-
ing and quantifying key cause-and-effect relationships,
causal AI enables targeted interventions that improve
resource efficiency, reduce costs, and enhance sustain-
ability. These insights provide decision-makers with a
structured approach to optimising production processes,
improving operational efficiency, and making informed
investments in process improvements.

In the context of stainless-steel manufacturing, the
analysis revealed specific causal relationships that can
directly inform process improvements and guide indus-
trial decision-making:

e Optimizing heat treatment parameters: The study
identified that variations in product weight and height
significantly influence the energy consumption of heat
treatment processes. Adjusting these parameters for
specific product profiles can reduce energy use. Man-
agers can use this insight to develop energy-efficient
heat treatment strategies by matching treatment inten-
sity with product characteristics, reducing unneces-
sary power consumption.

e Reducing processing times: Larger outer diameters
and heavier products were found to causally con-
tribute to longer process durations. By redesigning
workflows or adjusting equipment settings, manufac-
turers can reduce average processing times, thereby
enhancing throughput. Production planners can apply
these findings to optimise scheduling and allocate
machine workloads more effectively to prevent bottle-
necks.

e Key variables for energy efficiency: The causal anal-
ysis pinpointed that outer diameter and heat treat-
ment parameters have the most substantial impact
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on energy consumption. Focusing on optimising
these variables offers a pathway to significant energy
savings. Understanding these causal effects enables
industrial leaders to prioritise investments in process
automation and energy-efficient machinery, improv-
ing cost-effectiveness and sustainability.

From a managerial perspective, the results support
proactive process optimisation. Managers can refine
scheduling and heat treatment strategies based on causal
impacts, while engineers can integrate insights into sim-
ulations to redesign stages that increase energy use or
delay production. These causal relationships also offer a
foundation for developing predictive maintenance plans
and dynamic KPI dashboards aligned with production
realities. Furthermore, decision-makers can incorporate
these insights into training programs, enabling opera-
tional staff to better understand and control key drivers
of performance.

Beyond the stainless-steel industry, this approach can
be applied to other energy-intensive sectors, such as
automotive manufacturing or chemical processing, to
uncover inefliciencies and optimise production work-
flows based on industry-specific causal relationships.
These results highlight the potential of causal AI to
provide manufacturers with interpretable and action-
able insights, enabling sustainable and efficient improve-
ments in production processes. Integrating causal Al
into decision-support systems allows companies to sys-
tematically identify improvement opportunities, enhance
operational flexibility, and support long-term strategic
planning.

7.6. Limitations and future work

While the proposed framework offers valuable insights
into causal relationships in manufacturing processes,
several limitations should be acknowledged. First, the
data granularity is constrained by the temporal reso-
lution of sensor readings and ERP timestamps, which
may obscure short-term dynamics or overlapping oper-
ations. In particular, energy data are aggregated at the
machine level without fine-grained breakdowns for sub-
processes, potentially limiting the precision of causal
attribution. Additionally, the analysis was conducted on a
limited number of datasets from specific manufacturing
contexts. Expanding these methods to diverse datasets
across different industries, including logistics and sup-
ply chain management, will enhance generalizability and
scalability while identifying industry-specific challenges
in real-world deployment.

Second, the causal discovery algorithms employed,
DirectLiINGAM and RESIT, operate under specific
assumptions. DirectLiNGAM assumes linearity and non-
Gaussian noise, while RESIT requires additive noise and
functional relationships. If these assumptions are violated
in practice, the resulting graphs may omit or misrep-
resent certain dependencies. Moreover, both methods
assume causal sufficiency (i.e. no hidden confounders),
which may not always hold in real-world production
settings. Furthermore, DirectLiNGAM and RESIT have
limitations in handling complex causal structures, par-
ticularly in the presence of unobserved confounders
and dynamic system changes. Unobserved confounders
remain a significant challenge, potentially introducing
bias into causal inferences. Techniques such as sensitivity
analysis, instrumental variables, and domain-informed
causal priors should be further developed to improve
robustness and practical applicability in industrial set-
tings.

Third, real-world implementation poses practical
challenges. Translating causal insights into actionable
process changes often requires cross-functional coordi-
nation and changes in scheduling, machine usage, or
material flow. Additionally, domain experts may be hes-
itant to adopt algorithm-driven interventions without
clear interpretability or process validation. Ensuring inte-
gration with existing IT infrastructure (e.g. ERP/MES
systems) and addressing organisational inertia remain
non-trivial hurdles.

To address these limitations, future research should
focus on:

e Increasing data granularity through real-time IoT-
based sensing.

e Advancing causal discovery algorithms to better
capture complex, dynamic relationships in high-
dimensional datasets.

e Employing multiple identification strategies (e.g.
backdoor, frontdoor, instrumental variables) to
strengthen causal inferences and mitigate unobserved
confounders.

o Testing robustness under assumption violations (e.g.
through sensitivity or latent confounder analyses).

e Developing human-in-the-loop systems to ease adop-
tion and decision-making in industrial environments.

e Developing automated decision-support tools that
facilitate the integration of causal AI into manufac-
turing workflows, making it accessible for industrial
practitioners.

e Extending applications to broader industrial con-
texts, such as Industry 4.0, energy management, and



sustainable manufacturing, to validate scalability and
long-term impact.

By addressing these limitations and pursuing the out-
lined directions, future work can enhance the adoption
of interpretable, causality-driven approaches that sup-
port data-driven decision-making in manufacturing and

beyond.

8. Conclusion and outlook

The integration of causal Al into manufacturing analyt-
ics represents a significant advancement in data-driven
decision-making. This paper contributes to the state of
the art by presenting a comprehensive and validated
framework for applying causal discovery and inference to
production data in energy-intensive, customised manu-
facturing environments. Specifically, we advance the field
by (i) integrating multiple causal estimation strategies
(backdoor, frontdoor, instrumental variables), (ii) com-
paring two causal discovery algorithms (DirectLINGAM,
RESIT) in a multi-workstation setup, and (iii) validating
causal insights through domain knowledge and refuta-
tion tests.

Our framework revealed how product-specific char-
acteristics, such as weight, height, and outer diameter,
causally affect power consumption and process duration.
Although individual causal effects were often modest,
their cumulative impact across large-scale operations is
significant. The results underscore the value of causal rea-
soning in uncovering nuanced, actionable patterns that
traditional correlation-based methods may overlook.

Future research should build on this foundation to
further strengthen the operational relevance and tech-
nical scalability of causal Al in industrial contexts. One
promising direction is the integration of causal models
with digital twins, enabling real-time monitoring, sim-
ulation, and adaptive process control based on causal
feedback loops. This integration can facilitate proactive
decision-making and dynamic reconfiguration of pro-
duction systems in response to changing conditions.
Another key avenue is the adoption of temporal causal
models, such as Dynamic Bayesian Networks, Granger
causality, and time-aware Structural Equation Models
(SEMs), to capture sequential dependencies, delayed
effects, and feedback loops inherent in manufacturing
processes. These models can enhance the analysis of
batch production, maintenance cycles, or energy con-
sumption patterns over time. Moreover, multi-site valida-
tion is essential to assess the generalizability and robust-
ness of the proposed approach. Applying the frame-
work across different factories, production lines, or
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industry sectors (e.g. automotive, food processing, or
electronics) would uncover commonalities and domain-
specific differences, thus informing the development of
transfer learning or meta-causal modelling strategies for
broader applicability. In parallel, future work should
explore hybrid approaches combining causal discovery
with domain ontologies or physics-informed models to
improve interpretability and reduce reliance on data vol-
ume alone. Incorporating expert feedback directly into
the causal learning loop can also enhance trustworthi-
ness and compliance with safety-critical constraints in
high-stakes environments.

To operationalise causal Al at scale, several prerequi-
sites must be addressed. Technically, robust data infras-
tructure is required to ensure high-frequency, synchro-
nised, and clean data from heterogeneous sources. Auto-
mated feature engineering and causal graph generation
tools will reduce the manual workload for analysts. Orga-
nizationally, cross-functional collaboration between data
scientists, process engineers, and domain experts is crit-
ical to ensure that causal insights are actionable and cor-
rectly interpreted. Moreover, change management and
training programs are necessary to build trust in model-
driven recommendations and facilitate adoption on the
shop floor.

In conclusion, causal Al offers a powerful path-
way toward sustainable and intelligent manufacturing.
By making causality a first-class citizen in analytics
pipelines, companies can move beyond correlation-based
insights and toward root-cause-driven optimisation. The
proposed framework provides a foundation for future
deployments, with the potential to be extended across
industries and scaled through integration with digital
platforms, simulation tools, and enterprise systems.

Note

1. DoWhy, https://github.com/py-why/dowhy, accessed June
4,2024
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Appendices

Appendix 1. Visualizations from exploratory data analysis (EDA)
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Figure A1. Distribution of power consumption and process duration for workstation 50513. The plot shows that both variables are right-
skewed, with a concentration of values at lower ranges and a long tail of higher values. This skewness highlights variability and the
presence of outliers, motivating further preprocessing and normalisation.

l |
S6 Sl S4 S3 S2

productcategory_id

35k
30k
25k
20k
15k
10k

5k

count

(a) Power consumption histogram.

S6 S1

(b) Process duration histogram.

10k

8k

6k

count

4k

2k

S5 S4 S3 S2
productcategory_id

Figure A2. Histograms of power consumption and process duration for workstation 50513. These visualisations reveal frequency distri-
butions of the two target variables used in causal analysis. Both show a majority of cases clustered at lower values, supporting the need
to account for skew and outliers in further modelling steps. (a) Power consumption histogram. (b) Process duration histogram.
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Appendix 2. Generated causal graphs for other workstations
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(a) Causal graph generated by DirectLINGAM. (b) Causal graph generated by RESIT.
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Figure A3. Comparison of causal graphs generated by DirectLiNGAM and RESIT for workstation 50514 using the power consump-
tion dataset. Each graph illustrates inferred causal relationships among production variables related to energy usage. (a) Causal graph
generated by DirectLiNGAM. (b) Causal graph generated by RESIT.
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(a) Causal graph generated by DirectLINGAM. (b) Causal graph generated by RESIT.

Figure A4. Comparison of causal graphs generated by DirectLiNGAM and RESIT for workstation 50516 using the power consumption
dataset. These visualisations show the structure of inferred causal relationships between key production features. (a) Causal graph
generated by DirectLiNGAM. (b) Causal graph generated by RESIT.
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0. workplace_id

(a) Causal graph generated by DirectLINGAM.
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(b) Causal graph generated by RESIT.
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Figure A5. Comparison of causal graphs generated by DirectLiNGAM and RESIT for workstation 50514 using the process duration
dataset. Each graph illustrates inferred causal relationships among production variables that influence process timing. (a) Causal graph
generated by DirectLiNGAM. (b) Causal graph generated by RESIT.

(a) Causal graph generated by Direct LINGAM.
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Figure A6. Comparison of causal graphs generated by DirectLiNGAM and RESIT for workstation 50516 using the process duration
dataset. These visualisations highlight differences in inferred causal structures related to the timing of production steps. (a) Causal graph
generated by DirectLiNGAM. (b) Causal graph generated by RESIT.

Appendix 3. DoWhy outcomes for other generated graphs

Table A1. Estimated causal effects for power consumption at workplace ID 50514.

(a) Causal estimation,

Workplace ID 50514

power consumption

dataset: DirectLiINGAM RESIT Manual model
Heat Treatment 2.63 293 —0.24
Weight 8.72 0 —1.85
Height —0.72 —0.04 —11.35
Outer Diameter 0 1.51 0.71
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Table A2. Estimated causal effects for process duration at workplace ID 50514.

o Workplace ID 50514
(b) Causal estimation,

process duration dataset: DirectLINGAM RESIT Manual model
Heat Treatment 0.07 0.01 —0.23
Weight 0.09 0.1 0.08
Height —0.09 0.01 —0.05
Outer Diameter 0.004 0.36 —0.03
Inner Diameter —0.44 0.06 0.03

Table A3. Estimated causal effects for power consumption at workplace ID 50516.

(a) Causal estimation, Workplace ID 50516

power consumption

dataset: DirectLiNGAM RESIT Manual model
Heat Treatment —27.10 —27.10 —0.24
Weight 17.53 18.83 —1.85
Height —-3.12 11.83 —11.35
Outer Diameter 88.97 88.97 0.71

Table A4. Estimated causal effects for process duration at workplace ID 50516.

L Workplace ID 50516
(b) Causal estimation,

process duration dataset: DirectLINGAM RESIT Manual model
Heat Treatment 0 0 —0.23
Weight 0 0.04 0.08
Height 0.07 0.07 —0.05
Outer Diameter —0.14 0.00 —0.03
Inner Diameter —0.05 —-0.13 0.03
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Figure A7. Causal estimation summary for workplace ID 50514 using DoWhy. The visualisation illustrates the estimated average

treatment effects derived from the power consumption and process duration datasets.
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Causal Estimation for Workplace ID 50516
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Figure A8. Causal estimation summary for workplace ID 50516 using DoWhy. The graph summarises the estimated causal effects of
selected production features on energy use and process timing.
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