2025
Jeong, Heonyoung; Fekete, Tamas; Bashyal, Atit; Wicaksono, Hendro
From Theory to Practice: Implementing Causal AI in Manufacturing for Sustainability Journal Article
In: Procedia Computer Science, vol. 253, pp. 1495-1504, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, energy management, manufacturing, sustainability
@article{nokey,
title = {From Theory to Practice: Implementing Causal AI in Manufacturing for Sustainability},
author = {Heonyoung Jeong and Tamas Fekete and Atit Bashyal and Hendro Wicaksono },
url = {https://www.sciencedirect.com/science/article/pii/S1877050925002194},
doi = {https://doi.org/10.1016/j.procs.2025.01.211},
year = {2025},
date = {2025-02-25},
journal = {Procedia Computer Science},
volume = {253},
pages = {1495-1504},
abstract = {The use of AI in industry is increasingly popular, but its black-box nature poses decision-making challenges due to the lack of understanding of how variables influence each other. Causal AI addresses this by studying cause-and-effect relationships in the data. This paper explores applying causal AI in industry through a case study of CNC machines, which are significant in manufacturing and consume large amounts of energy. Industry 4.0 is transforming manufacturing, with CNC machines generating vast data analyzed by often opaque machine learning methods. Causal AI can uncover and quantify causal relationships between variables, aiding decision-making. Our case study uses CNC power consumption data to demonstrate causal AI in manufacturing, with existing models verifying our methodology. Future studies should extend our research to include variables without existing models, such as human habits. This case study serves as a starting point for other researchers, facilitating similar studies on complex data.},
keywords = {artificial intelligence, causal AI, causal inference, energy management, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Bashyal, Atit; Alnahas, Hani; Boroukhian, Tina; Wicaksono, Hendro
Demand response based industrial energy management with focus on consumption of renewable energy: a deep reinforcement learning approach Journal Article
In: Procedia Computer Science, vol. 253, pp. 1442-1451, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, demand response system, energy management, manufacturing, reinforcement learning
@article{nokey,
title = {Demand response based industrial energy management with focus on consumption of renewable energy: a deep reinforcement learning approach},
author = {Atit Bashyal and Hani Alnahas and Tina Boroukhian and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S1877050925002145},
doi = {https://doi.org/10.1016/j.procs.2025.01.206},
year = {2025},
date = {2025-02-25},
journal = {Procedia Computer Science},
volume = {253},
pages = {1442-1451},
abstract = {Integrating Renewable Energy Resources (RESs) into power grids requires effective Demand Response (DR) programs. Despite high DR potential in industrial sectors, adoption lags behind that of residential and commercial sectors due to diverse operations and production continuity requirements. This paper explores a reinforcement learning (RL)-based DR scheme for energy-intensive industries, promoting the consumption of distributed Renewable Energy (RE) generation. Our approach introduces modifications to the existing Markov Decision Process (MDP) framework. It proposes a flexible reward structure that provides flexibility in balancing production requirements and promotes the consumption of RE. This study addresses the gap in industrial DR literature, emphasizing tailored DR solutions for industrial settings. The key highlight of our RL-based DR solution is its ability to facilitate a price-based DR scheme while promoting the integration of RE into the smart grid.
},
keywords = {artificial intelligence, demand response system, energy management, manufacturing, reinforcement learning},
pubstate = {published},
tppubtype = {article}
}
2024
Shah, Muhammad Abdullah; Wicaksono, Hendro
Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment Journal Article
In: Procedia CIRP, vol. 130, pp. 226-231, 2024.
Abstract | Links | BibTeX | Tags: energy management, machine learning, manufacturing, sustainability
@article{Shah2024,
title = {Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment},
author = {Muhammad Abdullah Shah and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S2212827124012332},
doi = {https://doi.org/10.1016/j.procir.2024.10.080},
year = {2024},
date = {2024-11-27},
urldate = {2024-11-27},
journal = {Procedia CIRP},
volume = {130},
pages = {226-231},
abstract = {Rising energy costs drive a compelling demand for energy-efficient manufacturing across sectors, paralleled by increasing consumer preferences for eco-friendly products. To remain competitive, companies are actively enhancing their energy efficiency. Integrating dynamic pricing in manufacturing, aimed at optimizing renewable energy use, requires strategic adjustments in production planning for sustainability. This research highlights the importance of incorporating dynamic pricing into production planning, emphasizing the need to shift processes to time slots when the energy prices are low or optimal. This study focuses on predicting the power consumption of multi-step CNC machine operations within a production cycle. Utilizing advanced Machine Learning (ML), including neural networks, statistical, and additive models, this research found unique time series characteristics influencing model performance across production steps. A practical use case within a German manufacturing Small and Medium Enterprises (SME) demonstrates how prediction results can optimize production processes in a dynamic pricing environment, providing a blueprint for diverse machinery forecasting models. This research’s insights extend to any industry managing production schedules for multiple machines with various steps in a process cycle. Industries with high energy consumption will benefit significantly through aligning operational efficiency with environmental sustainability goals.},
keywords = {energy management, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Wicaksono, Hendro; Trat, Martin; Bashyal, Atit; Boroukhian, Tina; Felder, Mine; Ahrens, Mischa; Bender, Janek; Groß, Sebastian; Steiner, Daniel; July, Christoph; others,
Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes Journal Article
In: The International Journal of Advanced Manufacturing Technology, pp. 1–25, 2024.
Abstract | Links | BibTeX | Tags: artificial intelligence, demand response system, energy management, machine learning, manufacturing, ontologies, reinforcement learning
@article{wicaksono2024artificial,
title = {Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes},
author = {Hendro Wicaksono and Martin Trat and Atit Bashyal and Tina Boroukhian and Mine Felder and Mischa Ahrens and Janek Bender and Sebastian Groß and Daniel Steiner and Christoph July and others},
url = {https://link.springer.com/article/10.1007/s00170-024-13372-7},
doi = {https://doi.org/10.1007/s00170-024-13372-7},
year = {2024},
date = {2024-03-22},
urldate = {2024-01-01},
journal = {The International Journal of Advanced Manufacturing Technology},
pages = {1–25},
publisher = {Springer London},
abstract = {The transition towards renewable electricity provides opportunities for manufacturing companies to save electricity costs through participating in demand response programs. End-to-end implementation of demand response systems focusing on manufacturing power consumers is still challenging due to multiple stakeholders and subsystems that generate a heterogeneous and large amount of data. This work develops an approach utilizing artificial intelligence for a demand response system that optimizes industrial consumers’ and prosumers’ production-related electricity costs according to time-variable electricity tariffs. It also proposes a semantic middleware architecture that utilizes an ontology as the semantic integration model for handling heterogeneous data models between the system’s modules. This paper reports on developing and evaluating multiple machine learning models for power generation forecasting and load prediction, and also mixed-integer linear programming as well as reinforcement learning for production optimization considering dynamic electricity pricing represented as Green Electricity Index (GEI). The experiments show that the hybrid auto-regressive long-short-term-memory model performs best for solar and convolutional neural networks for wind power generation forecasting. Random forest, k-nearest neighbors, ridge, and gradient-boosting regression models perform best in load prediction in the considered use cases. Furthermore, this research found that the reinforcement-learning-based approach can provide generic and scalable solutions for complex and dynamic production environments. Additionally, this paper presents the validation of the developed system in the German industrial environment, involving a utility company and two small to medium-sized manufacturing companies. It shows that the developed system benefits the manufacturing company that implements fine-grained process scheduling most due to its flexible rescheduling capacities.
},
keywords = {artificial intelligence, demand response system, energy management, machine learning, manufacturing, ontologies, reinforcement learning},
pubstate = {published},
tppubtype = {article}
}
Thapaliya, Suman; Valilai, Omid Fatahi; Wicaksono, Hendro
Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI) Journal Article
In: Procedia Computer Science, vol. 232, pp. 861–870, 2024.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing
@article{thapaliya2024power,
title = {Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI)},
author = {Suman Thapaliya and Omid Fatahi Valilai and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S1877050924000863},
doi = {https://doi.org/10.1016/j.procs.2024.01.086},
year = {2024},
date = {2024-03-20},
urldate = {2024-03-20},
journal = {Procedia Computer Science},
volume = {232},
pages = {861–870},
publisher = {Elsevier},
abstract = {Due to environmental issues such as climate change, companies are required to optimize their resource and energy consumption in their production process. Predicting power consumption and processing time of all production facilities is essential for manufacturing to develop mechanisms to prevent energy and resource waste and optimize their use. Machine learning is a powerful tool for prediction tasks using data in digitalized environments. In this paper, we present power consumption and processing time prediction of CNC milling machines using five machine learning regression models, i.e., decision tree, random forest, support vector regression (SVR), extreme gradient boosting (XGBoost), and artificial neural network (ANN). Since most of those models are black-box, we applied two explainable artificial intelligence (XAI) approaches, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to give post-hoc explanations of the predictions given by the machine learning models. Our experiments indicated that random forest regression performed the best in predicting power consumption and processing time. The explanation showed that the number of axis rotations and the number of travels to the machine's zero point in rapid traverse were the most important factors that affected the processing time and power consumption. The companies using CNC milling machines can use our prediction models to optimally plan and schedule the operation of the milling machines in a time and energy-efficient manner. They can also optimize the factors that affect power consumption and processing time the most.
},
keywords = {energy management, explainable AI, machine learning, manufacturing},
pubstate = {published},
tppubtype = {article}
}
2023
Aikenov, Temirlan; Hidayat, Rahmat; Wicaksono, Hendro
Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry Proceedings Article
In: International Conference on Flexible Automation and Intelligent Manufacturing, pp. 1183–1193, Springer Nature Switzerland Cham 2023.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing, sustainability
@inproceedings{aikenov2023power,
title = {Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry},
author = {Temirlan Aikenov and Rahmat Hidayat and Hendro Wicaksono},
url = {https://link.springer.com/chapter/10.1007/978-3-031-38165-2_135},
doi = {https://doi.org/10.1007/978-3-031-38165-2_135},
year = {2023},
date = {2023-08-25},
urldate = {2023-01-01},
booktitle = {International Conference on Flexible Automation and Intelligent Manufacturing},
pages = {1183–1193},
organization = {Springer Nature Switzerland Cham},
abstract = {Production shifted from a product-centered perspective (mass production of one article) to a customer-centered perspective (mass customization of product variants). It also happens in energy-intensive industries, such as steel production. Mass customization companies face a challenge in accurately estimating the total costs of an individual product. Furthermore, 20% to 40% of the costs related to steel products come from energy. Increasing the product variety can cause an inevitable loss of sustainability. This paper presents machine-learning approaches to improve the sustainability of the steel production industry. It is done by finding the most accurate way to predict the power consumption and the costs of customized products. Moreover, this research also finds the most energy-efficient machine mix based on the predictions. The method is validated in a steel manufacturing Small Medium Enterprise (SME). In this research, experiments were conducted with different machine learning models, and it was found that the most accurate results were achieved using regularization-based and random forest regression models. Explainable AI (XAI) is also used to clarify how product properties influence process costs and power consumption. This paper also discusses scenarios on how the prediction of costs and power consumption can assist production planners in performing workstation selection. This research improves the production planning of customized products by providing a trustable decision support system for machine selection based on explainable machine learning models for process time and power consumption predictions.
},
keywords = {energy management, explainable AI, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {inproceedings}
}
Krstevski, Stefan; Valilai, Omid Fatahi; Wicaksono, Hendro
Integrating Real-Time Dynamic Electricity Price Forecast into Job Shop Production Scheduling Model with Multiple Machine Environments Proceedings Article
In: Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications, pp. 98–106, 2023.
Abstract | Links | BibTeX | Tags: energy management, manufacturing, operation research
@inproceedings{krstevski2023integrating,
title = {Integrating Real-Time Dynamic Electricity Price Forecast into Job Shop Production Scheduling Model with Multiple Machine Environments},
author = {Stefan Krstevski and Omid Fatahi Valilai and Hendro Wicaksono},
doi = {https://doi.org/10.1145/3587889.3587905},
year = {2023},
date = {2023-06-09},
urldate = {2023-01-01},
booktitle = {Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications},
pages = {98–106},
abstract = {One of the challenges in the transition towards green electricity is the intermittence of power generated by renewable sources. Thus, power consumers, including the manufacturing industry, must adapt their activities and processes to green electricity supply. Real-time dynamic pricing is an approach to encourage electricity consumers to change their consumption patterns by lowering prices when the availability of green electricity in the grid is high. Due to the introduction of real-time electricity pricing, manufacturing companies must adapt their production planning by integrating dynamic price information into their production scheduling. Our research focuses on extending the basic production scheduling mathematical model by introducing real-time power pricing in the model. The prices are built based on the current proportion of green electricity in the grid represented in the green electricity index (GEI) with one-hour intervals. This paper also illustrates a scenario of how to use the model. Our future research will further extend the model addressing the flexibility of manufacturing shop floors (e.g. adding buffer, retooling, and setup time) and validate the model in two small and medium manufacturing enterprises.
},
keywords = {energy management, manufacturing, operation research},
pubstate = {published},
tppubtype = {inproceedings}
}
2021
Wicaksono, Hendro
Accelerating Energy Transition to Green Electricity through Artificial Intelligence Journal Article
In: 2021.
BibTeX | Tags: artificial intelligence, energy management, machine learning, ontologies, semantic web, sustainability
@article{wicaksono2021accelerating,
title = {Accelerating Energy Transition to Green Electricity through Artificial Intelligence},
author = {Hendro Wicaksono},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
publisher = {OSF Preprints},
keywords = {artificial intelligence, energy management, machine learning, ontologies, semantic web, sustainability},
pubstate = {published},
tppubtype = {article}
}
Wicaksono, Hendro; Boroukhian, Tina; Bashyal, Atit
A demand-response system for sustainable manufacturing using linked data and machine learning Book Section
In: Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics Research in Bremen, Germany, pp. 155–181, Springer International Publishing Cham, 2021.
BibTeX | Tags: energy management, machine learning, ontologies, semantic web
@incollection{wicaksono2021demand,
title = {A demand-response system for sustainable manufacturing using linked data and machine learning},
author = {Hendro Wicaksono and Tina Boroukhian and Atit Bashyal},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
booktitle = {Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics Research in Bremen, Germany},
pages = {155–181},
publisher = {Springer International Publishing Cham},
keywords = {energy management, machine learning, ontologies, semantic web},
pubstate = {published},
tppubtype = {incollection}
}