2025
Fekete, Tamas; Mengistu, Girum; Wicaksono, Hendro
Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study Journal Article
In: Sustainable Cities and Society, vol. 122, pp. 106240, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, machine learning, sustainability, transportation
@article{nokey,
title = {Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study},
author = {Tamas Fekete and Girum Mengistu and Hendro Wicaksono },
doi = {https://doi.org/10.1016/j.scs.2025.106240},
year = {2025},
date = {2025-03-15},
journal = {Sustainable Cities and Society},
volume = {122},
pages = {106240},
abstract = {The importance of developing sustainable urban transportation systems to protect the environment is increasingly recognized worldwide, particularly within the European Union. In the era of digitalization, data-driven approaches are crucial for informed decision-making. This study introduces a methodology leveraging causal artificial intelligence (causal AI) to uncover cause-and-effect relationships in urban transport data. Unlike traditional methods relying on correlations, causal AI identifies the true drivers of transport dynamics. A case study using MOL Bubi bike-sharing data from Budapest demonstrates how the PCMCI (Peter and Clark Momentary Conditional Independence) algorithm revealed complex temporal dependencies within the data, with temperature emerging as the strongest causal factor positively influencing bike usage. Additionally, the reopening of the Chain Bridge led to a 10.7% increase in bike trips, as quantified by Causal Impact analysis. This case study can be extended to more complex scenarios with unpredictable outcomes. The insights gained provide policymakers with a deeper understanding, enabling them to design policies fostering sustainable urban mobility. These results showcase the potential of causal AI to guide policies that enhance sustainable urban mobility.},
keywords = {artificial intelligence, causal AI, machine learning, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}
2024
Fan, Xiaotong; Valilai, Omid Fatahi; Wicaksono, Hendro
Integrating Economic, Technological, and Consumer Factors for Enhanced Accuracy in Electric Vehicle Demand Forecasting: A Case Study in Germany Proceedings Article
In: Lecture Notes in Mechanical Engineering (LNME): Flexible Automation and Intelligent Manufacturing: Manufacturing Innovation and Preparedness for the Changing World Order , Springer, 2024.
Abstract | Links | BibTeX | Tags: automotive industry, demand forecasting, machine learning, supply chain management, sustainability, timeseries analysis
@inproceedings{nokey,
title = {Integrating Economic, Technological, and Consumer Factors for Enhanced Accuracy in Electric Vehicle Demand Forecasting: A Case Study in Germany},
author = {Xiaotong Fan and Omid Fatahi Valilai and Hendro Wicaksono
},
doi = {https://doi.org/10.1007/978-3-031-74485-3_50},
year = {2024},
date = {2024-12-13},
booktitle = {Lecture Notes in Mechanical Engineering (LNME): Flexible Automation and Intelligent Manufacturing: Manufacturing Innovation and Preparedness for the Changing World Order },
publisher = {Springer},
abstract = {The development of the electric vehicle industry has the potential to reduce CO
emissions significantly and overcome energy supply challenges. However, manufacturing electric cars is a complex process consisting of procurement, logistics, and assembly. Accurate demand forecasting plays an essential role in the industry’s long-term development because it effectively fulfills customer needs while mitigating the risks of overproduction. Forecasting electric vehicle demand presents a significant challenge due to limited data availability and multiple factors influencing it. Comprehensive research integrating economic, technological, and consumer dynamics into demand forecasts remains notably deficient. The main goal of this research is to develop demand forecasting of electric vehicles within Germany, considering those factors, including variables like gasoline prices, the count of installed charging stations, and the Google search index. The research involves experimentation with various models, including Prophet, SARIMA, and their variants, incorporating different combinations of exogenous variables. The results demonstrate that SARIMA and its variants outperform other models regarding predictive accuracy. This research equips electric vehicle manufacturing companies with invaluable insights into market trends and the potential impact of diverse influencing variables. With this knowledge, companies can adapt their production strategies to align with market dynamics, enhancing their competitiveness in the rapidly evolving electric vehicle landscape.},
keywords = {automotive industry, demand forecasting, machine learning, supply chain management, sustainability, timeseries analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
emissions significantly and overcome energy supply challenges. However, manufacturing electric cars is a complex process consisting of procurement, logistics, and assembly. Accurate demand forecasting plays an essential role in the industry’s long-term development because it effectively fulfills customer needs while mitigating the risks of overproduction. Forecasting electric vehicle demand presents a significant challenge due to limited data availability and multiple factors influencing it. Comprehensive research integrating economic, technological, and consumer dynamics into demand forecasts remains notably deficient. The main goal of this research is to develop demand forecasting of electric vehicles within Germany, considering those factors, including variables like gasoline prices, the count of installed charging stations, and the Google search index. The research involves experimentation with various models, including Prophet, SARIMA, and their variants, incorporating different combinations of exogenous variables. The results demonstrate that SARIMA and its variants outperform other models regarding predictive accuracy. This research equips electric vehicle manufacturing companies with invaluable insights into market trends and the potential impact of diverse influencing variables. With this knowledge, companies can adapt their production strategies to align with market dynamics, enhancing their competitiveness in the rapidly evolving electric vehicle landscape.
Shah, Muhammad Abdullah; Wicaksono, Hendro
Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment Journal Article
In: Procedia CIRP, vol. 130, pp. 226-231, 2024.
Abstract | Links | BibTeX | Tags: energy management, machine learning, manufacturing, sustainability
@article{Shah2024,
title = {Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment},
author = {Muhammad Abdullah Shah and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S2212827124012332},
doi = {https://doi.org/10.1016/j.procir.2024.10.080},
year = {2024},
date = {2024-11-27},
urldate = {2024-11-27},
journal = {Procedia CIRP},
volume = {130},
pages = {226-231},
abstract = {Rising energy costs drive a compelling demand for energy-efficient manufacturing across sectors, paralleled by increasing consumer preferences for eco-friendly products. To remain competitive, companies are actively enhancing their energy efficiency. Integrating dynamic pricing in manufacturing, aimed at optimizing renewable energy use, requires strategic adjustments in production planning for sustainability. This research highlights the importance of incorporating dynamic pricing into production planning, emphasizing the need to shift processes to time slots when the energy prices are low or optimal. This study focuses on predicting the power consumption of multi-step CNC machine operations within a production cycle. Utilizing advanced Machine Learning (ML), including neural networks, statistical, and additive models, this research found unique time series characteristics influencing model performance across production steps. A practical use case within a German manufacturing Small and Medium Enterprises (SME) demonstrates how prediction results can optimize production processes in a dynamic pricing environment, providing a blueprint for diverse machinery forecasting models. This research’s insights extend to any industry managing production schedules for multiple machines with various steps in a process cycle. Industries with high energy consumption will benefit significantly through aligning operational efficiency with environmental sustainability goals.},
keywords = {energy management, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Almais, Agung Teguh Wibowo; Susilo, Adi; Naba, Agus; Sarosa, Moechammad; Juwono, Alamsyah Muhammad; Crysdian, Cahyo; Muslim, Muhammad Aziz; Wicaksono, Hendro
Characterization of Structural Building Damage in Post-Disaster Using GLCM-PCA Analysis Integration Journal Article
In: IEEE Access, vol. 12, 2024.
Abstract | Links | BibTeX | Tags: artificial intelligence, data science, machine learning
@article{nokey,
title = {Characterization of Structural Building Damage in Post-Disaster Using GLCM-PCA Analysis Integration},
author = {Agung Teguh Wibowo Almais and Adi Susilo and Agus Naba and Moechammad Sarosa and Alamsyah Muhammad Juwono and Cahyo Crysdian and Muhammad Aziz Muslim and Hendro Wicaksono},
url = {https://ieeexplore.ieee.org/abstract/document/10697160},
doi = {https://doi.org/10.1109/ACCESS.2024.3469637},
year = {2024},
date = {2024-09-27},
urldate = {2024-09-27},
journal = {IEEE Access},
volume = {12},
abstract = {Objective: To determine the characteristics of a building after a natural disaster using image input through the integration of image analysis techniques. Methods: Several image analysis techniques, including GLCM and PCA, were employed. The GLCM process converts image input into numerical values using 8 different angles and pixel distances of 1 and 0.5 pixels. The numerical values from GLCM are then processed by PCA to extract information stored in the images of buildings post-disaster. Results: The PCA process revealed different information between images processed with GLCM at 1 pixel distance and those at 0.5 pixel distance. Validation by surveyors confirmed that the accurate information corresponding to real images was obtained from GLCM with a 0.5 pixel distance, indicating severe damage. The PCA results using GLCM at 0.5 pixel distance produced 2D and 3D visualizations with dominant coordinates in the severely damaged cluster, with a value range (n) of n ≥ 2. Conclusion: Based on these findings, the integration of image analysis techniques, specifically GLCM and PCA, can be used to determine the level of damage to buildings after a natural disaster.},
keywords = {artificial intelligence, data science, machine learning},
pubstate = {published},
tppubtype = {article}
}
Supyen, Kritkorn; Mathur, Abhishek; Boroukhian, Tina; Wicaksono, Hendro
Streamlining Manufacturing Resource Digitization for Digital Twins Through Ontologies and Object Detection Techniques Proceedings Article
In: International Conference on Dynamics in Logistics, pp. 419–430, Springer Nature Switzerland Cham 2024.
Abstract | Links | BibTeX | Tags: computer vision, digital twins, machine learning, ontologies, semantic web
@inproceedings{supyen2024streamlining,
title = {Streamlining Manufacturing Resource Digitization for Digital Twins Through Ontologies and Object Detection Techniques},
author = {Kritkorn Supyen and Abhishek Mathur and Tina Boroukhian and Hendro Wicaksono},
url = {https://link.springer.com/chapter/10.1007/978-3-031-56826-8_32},
doi = {https://doi.org/10.1007/978-3-031-56826-8_32},
year = {2024},
date = {2024-04-03},
urldate = {2024-04-03},
booktitle = {International Conference on Dynamics in Logistics},
pages = {419–430},
organization = {Springer Nature Switzerland Cham},
abstract = {Digital twins play an essential role in manufacturing companies to adopt Industry 4.0. However, their uptake has been lagging, especially in European manufacturing firms. This can be attributed to the absence of automated methods for digitizing physical manufacturing resources and creating digital representations accessible and processable by both humans and computers. Our research addresses this challenge by automating the digitization of manufacturing resources captured on the shop floor. We employ object detection techniques on a set of images and align the results with an ontology that standardizes the semantic description of digital representations. This research aims to accelerate digital transformation for manufacturing companies, providing digital representations to their physical resources. The ontology-based digital representation fosters interoperability among diverse equipment and machines from various vendors. It enables the automated deployment of digital twins, improving the efficiency of planning and control of manufacturing systems.
},
keywords = {computer vision, digital twins, machine learning, ontologies, semantic web},
pubstate = {published},
tppubtype = {inproceedings}
}
Wicaksono, Hendro; Trat, Martin; Bashyal, Atit; Boroukhian, Tina; Felder, Mine; Ahrens, Mischa; Bender, Janek; Groß, Sebastian; Steiner, Daniel; July, Christoph; others,
Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes Journal Article
In: The International Journal of Advanced Manufacturing Technology, pp. 1–25, 2024.
Abstract | Links | BibTeX | Tags: artificial intelligence, demand response system, energy management, machine learning, manufacturing, ontologies, reinforcement learning
@article{wicaksono2024artificial,
title = {Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes},
author = {Hendro Wicaksono and Martin Trat and Atit Bashyal and Tina Boroukhian and Mine Felder and Mischa Ahrens and Janek Bender and Sebastian Groß and Daniel Steiner and Christoph July and others},
url = {https://link.springer.com/article/10.1007/s00170-024-13372-7},
doi = {https://doi.org/10.1007/s00170-024-13372-7},
year = {2024},
date = {2024-03-22},
urldate = {2024-01-01},
journal = {The International Journal of Advanced Manufacturing Technology},
pages = {1–25},
publisher = {Springer London},
abstract = {The transition towards renewable electricity provides opportunities for manufacturing companies to save electricity costs through participating in demand response programs. End-to-end implementation of demand response systems focusing on manufacturing power consumers is still challenging due to multiple stakeholders and subsystems that generate a heterogeneous and large amount of data. This work develops an approach utilizing artificial intelligence for a demand response system that optimizes industrial consumers’ and prosumers’ production-related electricity costs according to time-variable electricity tariffs. It also proposes a semantic middleware architecture that utilizes an ontology as the semantic integration model for handling heterogeneous data models between the system’s modules. This paper reports on developing and evaluating multiple machine learning models for power generation forecasting and load prediction, and also mixed-integer linear programming as well as reinforcement learning for production optimization considering dynamic electricity pricing represented as Green Electricity Index (GEI). The experiments show that the hybrid auto-regressive long-short-term-memory model performs best for solar and convolutional neural networks for wind power generation forecasting. Random forest, k-nearest neighbors, ridge, and gradient-boosting regression models perform best in load prediction in the considered use cases. Furthermore, this research found that the reinforcement-learning-based approach can provide generic and scalable solutions for complex and dynamic production environments. Additionally, this paper presents the validation of the developed system in the German industrial environment, involving a utility company and two small to medium-sized manufacturing companies. It shows that the developed system benefits the manufacturing company that implements fine-grained process scheduling most due to its flexible rescheduling capacities.
},
keywords = {artificial intelligence, demand response system, energy management, machine learning, manufacturing, ontologies, reinforcement learning},
pubstate = {published},
tppubtype = {article}
}
Thapaliya, Suman; Valilai, Omid Fatahi; Wicaksono, Hendro
Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI) Journal Article
In: Procedia Computer Science, vol. 232, pp. 861–870, 2024.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing
@article{thapaliya2024power,
title = {Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI)},
author = {Suman Thapaliya and Omid Fatahi Valilai and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S1877050924000863},
doi = {https://doi.org/10.1016/j.procs.2024.01.086},
year = {2024},
date = {2024-03-20},
urldate = {2024-03-20},
journal = {Procedia Computer Science},
volume = {232},
pages = {861–870},
publisher = {Elsevier},
abstract = {Due to environmental issues such as climate change, companies are required to optimize their resource and energy consumption in their production process. Predicting power consumption and processing time of all production facilities is essential for manufacturing to develop mechanisms to prevent energy and resource waste and optimize their use. Machine learning is a powerful tool for prediction tasks using data in digitalized environments. In this paper, we present power consumption and processing time prediction of CNC milling machines using five machine learning regression models, i.e., decision tree, random forest, support vector regression (SVR), extreme gradient boosting (XGBoost), and artificial neural network (ANN). Since most of those models are black-box, we applied two explainable artificial intelligence (XAI) approaches, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to give post-hoc explanations of the predictions given by the machine learning models. Our experiments indicated that random forest regression performed the best in predicting power consumption and processing time. The explanation showed that the number of axis rotations and the number of travels to the machine's zero point in rapid traverse were the most important factors that affected the processing time and power consumption. The companies using CNC milling machines can use our prediction models to optimally plan and schedule the operation of the milling machines in a time and energy-efficient manner. They can also optimize the factors that affect power consumption and processing time the most.
},
keywords = {energy management, explainable AI, machine learning, manufacturing},
pubstate = {published},
tppubtype = {article}
}
2023
Aikenov, Temirlan; Hidayat, Rahmat; Wicaksono, Hendro
Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry Proceedings Article
In: International Conference on Flexible Automation and Intelligent Manufacturing, pp. 1183–1193, Springer Nature Switzerland Cham 2023.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing, sustainability
@inproceedings{aikenov2023power,
title = {Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry},
author = {Temirlan Aikenov and Rahmat Hidayat and Hendro Wicaksono},
url = {https://link.springer.com/chapter/10.1007/978-3-031-38165-2_135},
doi = {https://doi.org/10.1007/978-3-031-38165-2_135},
year = {2023},
date = {2023-08-25},
urldate = {2023-01-01},
booktitle = {International Conference on Flexible Automation and Intelligent Manufacturing},
pages = {1183–1193},
organization = {Springer Nature Switzerland Cham},
abstract = {Production shifted from a product-centered perspective (mass production of one article) to a customer-centered perspective (mass customization of product variants). It also happens in energy-intensive industries, such as steel production. Mass customization companies face a challenge in accurately estimating the total costs of an individual product. Furthermore, 20% to 40% of the costs related to steel products come from energy. Increasing the product variety can cause an inevitable loss of sustainability. This paper presents machine-learning approaches to improve the sustainability of the steel production industry. It is done by finding the most accurate way to predict the power consumption and the costs of customized products. Moreover, this research also finds the most energy-efficient machine mix based on the predictions. The method is validated in a steel manufacturing Small Medium Enterprise (SME). In this research, experiments were conducted with different machine learning models, and it was found that the most accurate results were achieved using regularization-based and random forest regression models. Explainable AI (XAI) is also used to clarify how product properties influence process costs and power consumption. This paper also discusses scenarios on how the prediction of costs and power consumption can assist production planners in performing workstation selection. This research improves the production planning of customized products by providing a trustable decision support system for machine selection based on explainable machine learning models for process time and power consumption predictions.
},
keywords = {energy management, explainable AI, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {inproceedings}
}
Almais, Agung Teguh Wibowo; Susilo, Adi; Naba, Agus; Sarosa, Moechammad; Crysdian, Cahyo; Basid, Puspa Miladin NSA; Hariyadi, Mokhamad Amin; Tazi, Imam; Arif, Yunifa Miftachul; Wicaksono, Hendro
SASSD: A Smart Assessment System For Sector Damage Post-Natural Disaster Using Artificial Neural Networks Proceedings Article
In: 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), pp. 96–101, IEEE 2023.
Abstract | Links | BibTeX | Tags: data science, machine learning
@inproceedings{almais2023sassd,
title = {SASSD: A Smart Assessment System For Sector Damage Post-Natural Disaster Using Artificial Neural Networks},
author = {Agung Teguh Wibowo Almais and Adi Susilo and Agus Naba and Moechammad Sarosa and Cahyo Crysdian and Puspa Miladin NSA Basid and Mokhamad Amin Hariyadi and Imam Tazi and Yunifa Miftachul Arif and Hendro Wicaksono},
url = {https://ieeexplore.ieee.org/abstract/document/10249540},
doi = {https://doi.org/10.1109/COSITE60233.2023.10249540},
year = {2023},
date = {2023-08-02},
urldate = {2023-08-02},
booktitle = {2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE)},
pages = {96–101},
organization = {IEEE},
abstract = {Smart Assessment System Sector Damage (SASSD) is an intelligent system for assessing the level of sector damage after natural disasters based on Machine Learning (ML) by applying the Artificial Neural Network (ANN) method. SASSD uses forward propagation in ANN. To measure the level of accuracy of the forward propagation algorithm, it is necessary to have a trial method using data pattern modelling. The optimal accrual level value can be achieved by applying 15 data pattern models and changing the structural values of the forward propagation, namely the hidden layer, and epoch. We used 100 training data and 50 testing data at the experimental stage. The training data is the processed data from Decision Support System (DSS), while the training data contains the level of damage to the sector after natural disasters collected by surveyors. The trial results demonstrate the E5 data pattern model’s ideal accuracy rate of 97 percent with a Mean Squared Error (MSE) value of 0.06 and a Mean Absolute Percentage error (MAPE) of 3 percent. This model uses five hidden layers and 125 epochs. The trial results demonstrate the E5 data pattern model’s ideal accuracy rate of 97 % with an MSE value of 0.06 and a MAPE of 3 %. This model uses five hidden layers and 125 epochs. Thus, the SASSD can use the 15th data pattern model (E5) to obtain optimal and accurate results.
},
keywords = {data science, machine learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Beibit, Rauan; Valilai, Omid Fatahi; Wicaksono, Hendro
Estimating the COVID-19 Impact on the Semiconductor Shortage in the European Automotive Industry using Supervised Machine Learning Proceedings Article
In: Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications, pp. 302–308, 2023.
Abstract | Links | BibTeX | Tags: machine learning, supply chain management, timeseries analysis
@inproceedings{beibit2023estimating,
title = {Estimating the COVID-19 Impact on the Semiconductor Shortage in the European Automotive Industry using Supervised Machine Learning},
author = {Rauan Beibit and Omid Fatahi Valilai and Hendro Wicaksono},
doi = {https://doi.org/10.1145/3587889.3588215},
year = {2023},
date = {2023-06-09},
urldate = {2023-01-01},
booktitle = {Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications},
pages = {302–308},
abstract = {The COVID-19 pandemic impacted different industrial sectors. It causes semiconductor shortage and, subsequently, on the industries downstream, such as the automotive industry. It is because of factory shutdown, increasing consumer electronic demands due to working from home, shifted focus of companies to consumer electronics, and limited logistic capacity. This research aims to analyze the influencing factors and estimate the extent of the impact of COVID-19 on the semiconductor and automotive industry in Europe using machine learning. We developed five regression models to predict the semiconductor sales and number of new passenger car registrations that reflect the development of sales in the automotive industry. Our research revealed that random forest regression is the best machine learning model for analyzing the relationship between COVID-19, semiconductor sales, and passenger car registrations. However, overall, our research found that the COVID-19 pandemic is not the only factor that impacts the semiconductor shortage in the automotive industry. The geopolitical landscape and the world’s reliance on Chinese exports are also essential influencing factors in many supply chains, including in the semiconductor and automotive sectors.
},
keywords = {machine learning, supply chain management, timeseries analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
Almais, Agung Teguh Wibowo; Susilo, Adi; Naba, Agus; Sarosa, Moechammad; Crysdian, Cahyo; Tazi, Imam; Hariyadi, Mokhamad Amin; Muslim, Muhammad Aziz; Basid, Puspa Miladin Nuraida Safitri Abdul; Arif, Yunifa Miftachul; others,
Principal Component Analysis-Based Data Clustering for Labeling of Level Damage Sector in Post-Natural Disasters Journal Article
In: IEEE Access, vol. 11, pp. 74590-74601, 2023.
Abstract | Links | BibTeX | Tags: data science, machine learning
@article{almais2023principal,
title = {Principal Component Analysis-Based Data Clustering for Labeling of Level Damage Sector in Post-Natural Disasters},
author = {Agung Teguh Wibowo Almais and Adi Susilo and Agus Naba and Moechammad Sarosa and Cahyo Crysdian and Imam Tazi and Mokhamad Amin Hariyadi and Muhammad Aziz Muslim and Puspa Miladin Nuraida Safitri Abdul Basid and Yunifa Miftachul Arif and others},
url = {https://ieeexplore.ieee.org/abstract/document/10123944},
doi = {https://doi.org/10.1109/ACCESS.2023.3275852},
year = {2023},
date = {2023-05-12},
urldate = {2023-01-01},
journal = {IEEE Access},
volume = {11},
pages = {74590-74601},
publisher = {IEEE},
abstract = {Post-disaster sector damage data is data that has features or criteria in each case the level of damage to the post-natural disaster sector data. These criteria data are building conditions, building structures, building physicals, building functions, and other supporting conditions. Data on the level of damage to the post-natural disaster sector used in this study amounted to 216 data, each of which has 5 criteria for damage to the post-natural disaster sector. Then PCA is used to look for labels in each data. The results of these labels will be used to cluster data based on the value scale of the results of data normalization in the PCA process. In the data normalization process at PCA, the data is divided into 2 components, namely PC1 and PC2. Each component has a variance ratio and eigenvalue generated in the PCA process. For PC1 it has a variance ratio of 85.17% and an eigenvalue of 4.28%, while PC2 has a variance ratio of 9.36% and an eigenvalue of 0.47%. The results of data normalization are then made into a 2-dimensional graph to see the data visualization of the results of each main component (PC). The result is that there is 3 data cluster using a value scale based on the PCA results chart. The coordinate value (n) of each cluster is cluster 1 ( $text{n} < 0$ ), cluster 2 ( $0le text{n} < 2$ ), and cluster 3 ( $text{n}ge 2$ ). To test these 3 groups of data, it is necessary to conduct trials by comparing the original target data, there are two experiments, namely testing the PC1 results based on the original target data, and the PC2 results based on the original target data. The result is that there are 2 updates, the first is that the distribution of PC1 data is very good when comparing the distribution of data with PC2 in grouping data, because the eigenvalue of PC1 is greater than that of PC2. While second, the results of testing the PC1 data with the original target data produce good data grouping, because the original target data which has a value of 1 (slightly damaged) occupies the coordinates of group 1 (n < 0), the original target data which has a value of 2 (moderately damaged) occupies group 2 coordinates ( $0le text{n} < 2$ ), and for the original target data the value 3 (heavily damaged) occupies group 3 coordinates ( $text{n}ge 2$ ). Therefore, it can be concluded that PCA, which so far has been used by many studies as feature reduction, this study uses PCA for labeling unsupervised data so that it has appropriate data labels for further processing.},
keywords = {data science, machine learning},
pubstate = {published},
tppubtype = {article}
}
2022
Wicaksono, Hendro; Yuce, Baris; McGlinn, Kris; Calli, Ozum
Smart cities and buildings Book Section
In: Buildings and Semantics, pp. 25, CRC Press, 2022.
BibTeX | Tags: machine learning, ontologies, semantic web, smart cities, sustainability
@incollection{wicaksono2022smart,
title = {Smart cities and buildings},
author = {Hendro Wicaksono and Baris Yuce and Kris McGlinn and Ozum Calli},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Buildings and Semantics},
pages = {25},
publisher = {CRC Press},
keywords = {machine learning, ontologies, semantic web, smart cities, sustainability},
pubstate = {published},
tppubtype = {incollection}
}
2021
Wicaksono, Hendro
Data Driven Manufacturing: Challenges and Opportunities Presentation
01.01.2021.
BibTeX | Tags: data science, machine learning, manufacturing
@misc{wicaksono2021data,
title = {Data Driven Manufacturing: Challenges and Opportunities},
author = {Hendro Wicaksono},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
publisher = {OSF},
keywords = {data science, machine learning, manufacturing},
pubstate = {published},
tppubtype = {presentation}
}
Wicaksono, Hendro
Accelerating Energy Transition to Green Electricity through Artificial Intelligence Journal Article
In: 2021.
BibTeX | Tags: artificial intelligence, energy management, machine learning, ontologies, semantic web, sustainability
@article{wicaksono2021accelerating,
title = {Accelerating Energy Transition to Green Electricity through Artificial Intelligence},
author = {Hendro Wicaksono},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
publisher = {OSF Preprints},
keywords = {artificial intelligence, energy management, machine learning, ontologies, semantic web, sustainability},
pubstate = {published},
tppubtype = {article}
}
Fritz, Simon; Srikanthan, Vethiga; Arbai, Ryan; Sun, Chenwei; Ovtcharova, Jivka; Wicaksono, Hendro
Automatic information extraction from text-based requirements Journal Article
In: Int. J. Knowl. Eng, vol. 7, no. 1, pp. 8–13, 2021.
BibTeX | Tags: machine learning, natural language processing
@article{fritz2021automatic,
title = {Automatic information extraction from text-based requirements},
author = {Simon Fritz and Vethiga Srikanthan and Ryan Arbai and Chenwei Sun and Jivka Ovtcharova and Hendro Wicaksono},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Int. J. Knowl. Eng},
volume = {7},
number = {1},
pages = {8–13},
keywords = {machine learning, natural language processing},
pubstate = {published},
tppubtype = {article}
}
Wicaksono, Hendro; Boroukhian, Tina; Bashyal, Atit
A demand-response system for sustainable manufacturing using linked data and machine learning Book Section
In: Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics Research in Bremen, Germany, pp. 155–181, Springer International Publishing Cham, 2021.
BibTeX | Tags: energy management, machine learning, ontologies, semantic web
@incollection{wicaksono2021demand,
title = {A demand-response system for sustainable manufacturing using linked data and machine learning},
author = {Hendro Wicaksono and Tina Boroukhian and Atit Bashyal},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
booktitle = {Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics Research in Bremen, Germany},
pages = {155–181},
publisher = {Springer International Publishing Cham},
keywords = {energy management, machine learning, ontologies, semantic web},
pubstate = {published},
tppubtype = {incollection}
}
2020
Wicaksono, Hendro
Data analytics in supply chain management Journal Article
In: 2020.
BibTeX | Tags: data science, machine learning, supply chain management
@article{wicaksono2020data,
title = {Data analytics in supply chain management},
author = {Hendro Wicaksono},
year = {2020},
date = {2020-01-01},
urldate = {2020-01-01},
publisher = {OSF},
keywords = {data science, machine learning, supply chain management},
pubstate = {published},
tppubtype = {article}
}