2025
Ghribi, Youssef; Graha, Ega Rudy; Wicaksono, Hendro
Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry Journal Article
In: Procedia CIRP, vol. 134, pp. 849–854, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, data science, deep learning, demand forecasting, healthcare, machine learning, manufacturing, supply chain management
@article{ghribi2025comparative,
title = {Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry},
author = {Youssef Ghribi and Ega Rudy Graha and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.procir.2025.02.209},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Procedia CIRP},
volume = {134},
pages = {849–854},
publisher = {Elsevier},
abstract = {Demand forecasting is a crucial instrument in the business strategy. The medical devices in the healthcare system are further significant as critical roles. Multiple businesses rely on traditional forecasting techniques due to their simplicity and understandable algorithm’s easy-to-use nature characteristics. The research conducted for each model analyzes how traditional statistical, Machine Learning (ML), and Deep Learning (DL) models can be used to make demand forecasting more accurate and valuable in the medical device industry. The work expands beyond prior research to demonstrate the enhanced effectiveness of DL models compared to statistical and ML models across multiple areas. However, research still needs to identify studies that adopt a business-centric perspective on the practical applicability of these models. Research utilizing SARIMAX, Exponential Smoothing, Linear Regression, Average, Support Vector Regression (SVR), Random Forest (RF), K-Nearest Neighbour Regression (KNR), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolution 1D (CONV1D) models to forecast what people demand to order. The data comes from a German medical device manufacturer’s past sales record. We evaluated the model’s performance using the weighted Mean Absolute Percentage Error (wMAPE) method. These showed that DL models needed a lot of knowledge and preprocessing, but they were the most accurate at predicting what would happen. The LSTM model exhibited outstanding performance, achieving an average wMAPE of 0.3102, surpassing all other models. The research results for more sophisticated models surpass traditional statistical models despite limited datasets, recommending that medical device businesses consider investing in advanced demand forecasting models.
publisher={Elsevier}
}},
keywords = {artificial intelligence, data science, deep learning, demand forecasting, healthcare, machine learning, manufacturing, supply chain management},
pubstate = {published},
tppubtype = {article}
}
publisher={Elsevier}
}
2024
Fan, Xiaotong; Valilai, Omid Fatahi; Wicaksono, Hendro
Integrating Economic, Technological, and Consumer Factors for Enhanced Accuracy in Electric Vehicle Demand Forecasting: A Case Study in Germany Proceedings Article
In: Lecture Notes in Mechanical Engineering (LNME): Flexible Automation and Intelligent Manufacturing: Manufacturing Innovation and Preparedness for the Changing World Order , Springer, 2024.
Abstract | Links | BibTeX | Tags: automotive industry, demand forecasting, machine learning, supply chain management, sustainability, timeseries analysis
@inproceedings{nokey,
title = {Integrating Economic, Technological, and Consumer Factors for Enhanced Accuracy in Electric Vehicle Demand Forecasting: A Case Study in Germany},
author = {Xiaotong Fan and Omid Fatahi Valilai and Hendro Wicaksono
},
doi = {https://doi.org/10.1007/978-3-031-74485-3_50},
year = {2024},
date = {2024-12-13},
booktitle = {Lecture Notes in Mechanical Engineering (LNME): Flexible Automation and Intelligent Manufacturing: Manufacturing Innovation and Preparedness for the Changing World Order },
publisher = {Springer},
abstract = {The development of the electric vehicle industry has the potential to reduce CO
emissions significantly and overcome energy supply challenges. However, manufacturing electric cars is a complex process consisting of procurement, logistics, and assembly. Accurate demand forecasting plays an essential role in the industry’s long-term development because it effectively fulfills customer needs while mitigating the risks of overproduction. Forecasting electric vehicle demand presents a significant challenge due to limited data availability and multiple factors influencing it. Comprehensive research integrating economic, technological, and consumer dynamics into demand forecasts remains notably deficient. The main goal of this research is to develop demand forecasting of electric vehicles within Germany, considering those factors, including variables like gasoline prices, the count of installed charging stations, and the Google search index. The research involves experimentation with various models, including Prophet, SARIMA, and their variants, incorporating different combinations of exogenous variables. The results demonstrate that SARIMA and its variants outperform other models regarding predictive accuracy. This research equips electric vehicle manufacturing companies with invaluable insights into market trends and the potential impact of diverse influencing variables. With this knowledge, companies can adapt their production strategies to align with market dynamics, enhancing their competitiveness in the rapidly evolving electric vehicle landscape.},
keywords = {automotive industry, demand forecasting, machine learning, supply chain management, sustainability, timeseries analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
emissions significantly and overcome energy supply challenges. However, manufacturing electric cars is a complex process consisting of procurement, logistics, and assembly. Accurate demand forecasting plays an essential role in the industry’s long-term development because it effectively fulfills customer needs while mitigating the risks of overproduction. Forecasting electric vehicle demand presents a significant challenge due to limited data availability and multiple factors influencing it. Comprehensive research integrating economic, technological, and consumer dynamics into demand forecasts remains notably deficient. The main goal of this research is to develop demand forecasting of electric vehicles within Germany, considering those factors, including variables like gasoline prices, the count of installed charging stations, and the Google search index. The research involves experimentation with various models, including Prophet, SARIMA, and their variants, incorporating different combinations of exogenous variables. The results demonstrate that SARIMA and its variants outperform other models regarding predictive accuracy. This research equips electric vehicle manufacturing companies with invaluable insights into market trends and the potential impact of diverse influencing variables. With this knowledge, companies can adapt their production strategies to align with market dynamics, enhancing their competitiveness in the rapidly evolving electric vehicle landscape.