2025
Chawalitanont, Akarawint; Bashyal, Atit; Wicaksono, Hendro
In: Journal of Manufacturing Systems, vol. 83, pp. 713–735, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, deep learning, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability
@article{chawalitanont2025uncertaintyb,
title = {Uncertainty-aware power consumption prediction in customized stainless-steel manufacturing: A comparative study of hierarchical Bayesian and deep neural models},
author = {Akarawint Chawalitanont and Atit Bashyal and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.jmsy.2025.10.010},
year = {2025},
date = {2025-12-01},
urldate = {2025-12-01},
journal = {Journal of Manufacturing Systems},
volume = {83},
pages = {713–735},
publisher = {Elsevier},
abstract = {Energy-efficient and data-driven decision-making has become a critical priority in modern manufacturing, particularly in customized or make-to-order (MTO) production where product variability causes large fluctuations in power consumption. Existing prediction models in this domain are often deterministic, lacking the ability to quantify uncertainty and capture hierarchical data dependencies, which limits their reliability for operational use. This study addresses this gap by developing a hierarchical Bayesian learning framework for power consumption prediction in customized stainless-steel manufacturing. The objective is to design models that not only achieve high predictive accuracy but also provide calibrated uncertainty estimates to support risk-aware production decisions. Four models, i.e., Hierarchical Bayesian Linear Regression (HBLR), Hierarchical Bayesian Neural Network (HBNN), Fully Connected Neural Network (FCN), and One-Dimensional Convolutional Neural Network (1D-CNN), were implemented and benchmarked using three inference algorithms: No-U-Turn Sampler (NUTS), Automatic Differentiation Variational Inference (ADVI), and Stein Variational Gradient Descent (SVGD). The innovation lies in systematically quantifying uncertainty using coverage probability, sharpness, and calibration error, and in establishing a unified comparison between probabilistic and deterministic models. Results show that the HBLR–NUTS model achieves the best trade-off between accuracy (RMSE = 11.85) and calibration quality (coverage 0.98), while ADVI offers near-equivalent performance with significantly lower computation time. These uncertainty-aware predictions can be directly integrated into Manufacturing Execution System (MES) and Enterprise Resource Planning (ERP) environments for energy-optimized scheduling and cost-aware planning. The proposed framework provides a scalable, interpretable, and statistically reliable foundation for advancing sustainable, data-driven manufacturing analytics.},
keywords = {artificial intelligence, deep learning, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Boroukhian, Tina; Supyen, Kritkorn; Mclaughlan, Christopher William; Bashyal, Atit; Pham, Tuan; Wicaksono, Hendro
Semantic middleware for demand response systems: Enhancing data interoperability in green electricity management for manufacturing Journal Article
In: Computers in Industry, vol. 172, pp. 104354, 2025.
Abstract | Links | BibTeX | Tags: data management, demand response system, energy management, green energy, industry 4.0, industry 5.0, knowledge management, manufacturing, ontologies, semantic web, sustainability
@article{boroukhian2025semantic,
title = {Semantic middleware for demand response systems: Enhancing data interoperability in green electricity management for manufacturing},
author = {Tina Boroukhian and Kritkorn Supyen and Christopher William Mclaughlan and Atit Bashyal and Tuan Pham and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.compind.2025.104354},
year = {2025},
date = {2025-11-01},
urldate = {2025-01-01},
journal = {Computers in Industry},
volume = {172},
pages = {104354},
publisher = {Elsevier},
abstract = {Optimizing the consumption of green electricity across sectors, including manufacturing, is a critical strategy for achieving net-zero emissions and advancing clean production in Europe by 2050. Demand Response (DR) represents a promising approach to engaging power consumers from all sectors in the transition toward increased utilization of renewable energy sources. A functional DR system for manufacturing power consumers requires seamless data integration and communication between information systems across multiple domains, including both power consumption and generation. This paper introduces a semantic middleware specifically designed for DR systems in the manufacturing sector, using an ontology as the central information model. To develop this ontology, we adopted a strategy that reuses and unifies existing ontologies from multiple domains, ensuring comprehensive coverage of the data requirements for DR applications in manufacturing. To operationalize this strategy, we designed novel methods for effective ontology unification and implemented them within a dedicated unification tool. This process was followed by data-to-ontology mapping to construct a knowledge graph, and was further extended through the development of a querying system equipped with a natural language interface. Additionally, this paper offers insights into the deployment environment of the semantic middleware, encompassing multiple data sources and the applications that utilize this data. The proposed approach is implemented in multiple German manufacturing small and medium-sized enterprises connected to a utility company, demonstrating consistent data interpretation and seamless information integration. Consequently, the method offers practical potential for optimizing green electricity usage in the manufacturing sector and supporting the transition toward a more sustainable and cleaner future.},
keywords = {data management, demand response system, energy management, green energy, industry 4.0, industry 5.0, knowledge management, manufacturing, ontologies, semantic web, sustainability},
pubstate = {published},
tppubtype = {article}
}
Fekete, Tamas; Petrone, Isabella Marquez; Wicaksono, Hendro
A comprehensive causal AI framework for analysing factors affecting energy consumption and costs in customised manufacturing Journal Article
In: International Journal of Production Research, pp. 1–38, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, energy management, explainable AI, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability
@article{fekete2025comprehensive,
title = {A comprehensive causal AI framework for analysing factors affecting energy consumption and costs in customised manufacturing},
author = {Tamas Fekete and Isabella Marquez Petrone and Hendro Wicaksono},
url = {https://hendro-wicaksono.de/a-comprehensive-causal-ai-framework-for-analysing-factors-affecting-energy-consumption-and-costs-in-customised-manufacturing-2/},
doi = {https://doi.org/10.1080/00207543.2025.2580541},
year = {2025},
date = {2025-10-29},
urldate = {2025-10-29},
journal = {International Journal of Production Research},
pages = {1–38},
publisher = {Taylor & Francis},
abstract = {The manufacturing sector is a major energy consumer, resulting in high operational costs and environmental impacts. In customised manufacturing, optimising energy use is especially challenging due to high variability and complex interdependencies between process factors. Meanwhile, the increasing availability of operational data presents opportunities for advanced analytics. Unlike traditional machine learning, which identifies correlations, causal AI uncovers cause-and-effect relationships – enabling more explainable and actionable decision-making. This paper presents a causal AI framework that combines causal discovery and inference methods to analyse drivers of energy consumption and process duration in customised manufacturing. We integrate three core components: DirectLiNGAM and RESIT for causal discovery, and DoWhy for causal inference. Applied to a real-world case study in a German energy-intensive manufacturing Small and Medium-sized Enterprise (SME), the framework demonstrates its ability to identify key causal drivers of inefficiency and energy use. Results show improved interpretability, revealing, for example, that increasing product weight can reduce energy consumption by up to 4.70 kWh per unit, enabling targeted, data-driven interventions for optimisation. Compared to correlation-based models, the framework reveals underlying causes, helping decision-makers focus on critical levers for sustainability and cost reduction. The findings lay a foundation for applying causal AI in industrial settings through a structured, data-driven approach.},
keywords = {artificial intelligence, causal AI, causal inference, energy management, explainable AI, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Boroukhian, Tina; Supyen, Kritkorn; Samson, Jhealyn Bautista; Bashyal, Atit; Wicaksono, Hendro
Integrating 3D object detection with ontologies for accurate digital twin creation in manufacturing systems Journal Article
In: The International Journal of Advanced Manufacturing Technology, vol. 140, no. 9, pp. 4679–4711, 2025.
Abstract | Links | BibTeX | Tags: data science, deep learning, digital twins, image processing, industry 4.0, machine learning, manufacturing, object detection, ontologies, semantic web
@article{boroukhian2025integrating,
title = {Integrating 3D object detection with ontologies for accurate digital twin creation in manufacturing systems},
author = {Tina Boroukhian and Kritkorn Supyen and Jhealyn Bautista Samson and Atit Bashyal and Hendro Wicaksono},
doi = {https://doi.org/10.1007/s00170-025-16548-x},
year = {2025},
date = {2025-10-01},
urldate = {2025-10-01},
journal = {The International Journal of Advanced Manufacturing Technology},
volume = {140},
number = {9},
pages = {4679–4711},
publisher = {Springer London},
abstract = {The digitization of manufacturing resources through digital twins (DTs) enhances operational efficiency and resource management. Ontologies play a key role in maintaining semantic consistency within DT systems. However, existing ontology-based approaches face challenges, including limited adaptability, integration of heterogeneous data—such as 3D images—and high manual effort in ontology development. These limitations hinder the scalability of DT implementations. Traditional 2D imaging often lacks spatial accuracy in complex manufacturing environments, causing inefficiencies and higher costs. Integrating richer data with intelligent frameworks is crucial for improving production and adaptability. The proposed study addresses these challenges by introducing a methodology that integrates existing ontologies with advanced 3D object detection models. The proposed approach employs two fully automated pipelines: one for detecting manufacturing resources from 3D images and another for mapping them into ontologies, ensuring seamless integration into DT frameworks. By leveraging established ontologies, the methodology enhances interoperability, reduces implementation complexity, and facilitates scalable deployment of DT systems across various industrial applications. Additionally, a comparative analysis of multiple advanced 3D detection models provides valuable insights to guide the selection of optimal solutions for diverse industrial settings. Experimental results show that YOLOv8 achieved the highest performance, with 91% classification accuracy, 86% precision, 81% recall, and the fastest inference time of 0.66 s. For ontology population, four machine labels—Robot, MillingMachine, BandSaw, and Lathe—were successfully integrated using a semantic similarity-based mapping strategy, enabling automated class creation and merging. This innovative framework sets a new benchmark for DT implementations, offering enhanced accuracy, efficiency, and semantic coherence in modern manufacturing.},
keywords = {data science, deep learning, digital twins, image processing, industry 4.0, machine learning, manufacturing, object detection, ontologies, semantic web},
pubstate = {published},
tppubtype = {article}
}
Bashyal, Atit; Boroukhian, Tina; Veerachanchai, Pakin; Naransukh, Myanganbayar; Wicaksono, Hendro
Multi-agent deep reinforcement learning based demand response and energy management for heavy industries with discrete manufacturing systems Journal Article
In: Applied Energy, vol. 392, pp. 125990, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, data science, deep learning, demand response system, energy management, green energy, machine learning, manufacturing, operation research, reinforcement learning, sustainability
@article{bashyal2025multi,
title = {Multi-agent deep reinforcement learning based demand response and energy management for heavy industries with discrete manufacturing systems},
author = {Atit Bashyal and Tina Boroukhian and Pakin Veerachanchai and Myanganbayar Naransukh and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.apenergy.2025.125990},
year = {2025},
date = {2025-08-15},
urldate = {2025-01-01},
journal = {Applied Energy},
volume = {392},
pages = {125990},
publisher = {Elsevier},
abstract = {Energy-centric decarbonization of heavy industries, such as steel and cement, necessitates their participation in integrating Renewable Energy Sources (RES) and effective Demand Response (DR) programs. This situation has created the opportunities to research control algorithms in diverse DR scenarios. Further, the industrial sector’s unique challenges, including the diversity of operations and the need for uninterrupted production, bring unique challenges in designing and implementing control algorithms. Reinforcement learning (RL) methods are practical solutions to the unique challenges faced by the industrial sector. Nevertheless, research in RL for industrial demand response has not yet achieved the level of standardization seen in other areas of RL research, hindering broader progress. To propel the research progress, we propose a multi-agent reinforcement learning (MARL)-based energy management system designed to optimize energy consumption in energy-intensive industrial settings by leveraging dynamic pricing DR schemes. The study highlights the creation of a MARL environment and addresses these challenges by designing a general framework that allows researchers to replicate and implement MARL environments for industrial sectors. The proposed framework incorporates a Partially Observable Markov Decision Process (POMDP) to model energy consumption and production processes while introducing buffer storage constraints and a flexible reward function that balances production efficiency and cost reduction. The paper evaluates the framework through experimental validation within a steel powder manufacturing facility. The experimental results validate our framework and also demonstrate the effectiveness of the MARL-based energy management system.},
keywords = {artificial intelligence, data science, deep learning, demand response system, energy management, green energy, machine learning, manufacturing, operation research, reinforcement learning, sustainability},
pubstate = {published},
tppubtype = {article}
}
Wicaksono, Hendro; Trat, Martin; Bashyal, Atit; Boroukhian, Tina; Felder, Mine; Ahrens, Mischa; Bender, Janek; Groß, Sebastian; Steiner, Daniel; July, Christoph; others,
Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes Journal Article
In: The International Journal of Advanced Manufacturing Technology, vol. 138, pp. 247–271, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, data management, data science, demand response system, energy management, green energy, industry 4.0, interoperability, machine learning, manufacturing, ontologies, reinforcement learning, semantic web, sustainability
@article{wicaksono2024artificial,
title = {Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes},
author = {Hendro Wicaksono and Martin Trat and Atit Bashyal and Tina Boroukhian and Mine Felder and Mischa Ahrens and Janek Bender and Sebastian Groß and Daniel Steiner and Christoph July and others},
url = {https://link.springer.com/article/10.1007/s00170-024-13372-7},
doi = {https://doi.org/10.1007/s00170-024-13372-7},
year = {2025},
date = {2025-05-01},
urldate = {2025-05-01},
journal = {The International Journal of Advanced Manufacturing Technology},
volume = {138},
pages = { 247–271},
publisher = {Springer London},
abstract = {The transition towards renewable electricity provides opportunities for manufacturing companies to save electricity costs through participating in demand response programs. End-to-end implementation of demand response systems focusing on manufacturing power consumers is still challenging due to multiple stakeholders and subsystems that generate a heterogeneous and large amount of data. This work develops an approach utilizing artificial intelligence for a demand response system that optimizes industrial consumers’ and prosumers’ production-related electricity costs according to time-variable electricity tariffs. It also proposes a semantic middleware architecture that utilizes an ontology as the semantic integration model for handling heterogeneous data models between the system’s modules. This paper reports on developing and evaluating multiple machine learning models for power generation forecasting and load prediction, and also mixed-integer linear programming as well as reinforcement learning for production optimization considering dynamic electricity pricing represented as Green Electricity Index (GEI). The experiments show that the hybrid auto-regressive long-short-term-memory model performs best for solar and convolutional neural networks for wind power generation forecasting. Random forest, k-nearest neighbors, ridge, and gradient-boosting regression models perform best in load prediction in the considered use cases. Furthermore, this research found that the reinforcement-learning-based approach can provide generic and scalable solutions for complex and dynamic production environments. Additionally, this paper presents the validation of the developed system in the German industrial environment, involving a utility company and two small to medium-sized manufacturing companies. It shows that the developed system benefits the manufacturing company that implements fine-grained process scheduling most due to its flexible rescheduling capacities.
},
keywords = {artificial intelligence, data management, data science, demand response system, energy management, green energy, industry 4.0, interoperability, machine learning, manufacturing, ontologies, reinforcement learning, semantic web, sustainability},
pubstate = {published},
tppubtype = {article}
}
Angreani, Linda S; Vijaya, Annas; Wicaksono, Hendro
OntoMat 4.0: An Ontology Framework for Enhanced Industry 4.0 Maturity Assessment Journal Article
In: IEEE Access, vol. 13, pp. 68801-68819, 2025.
Abstract | Links | BibTeX | Tags: digital transformation, industry 4.0, interoperability, manufacturing, ontologies, semantic web, supply chain management
@article{angreani2025ontomat,
title = {OntoMat 4.0: An Ontology Framework for Enhanced Industry 4.0 Maturity Assessment},
author = {Linda S Angreani and Annas Vijaya and Hendro Wicaksono},
doi = {https://doi.org/10.1109/ACCESS.2025.3561229},
year = {2025},
date = {2025-04-15},
urldate = {2025-01-01},
journal = {IEEE Access},
volume = {13},
pages = {68801-68819},
publisher = {IEEE},
abstract = {Industry 4.0 (I4.0) is expected to revolutionize the manufacturing process and business model and offer a significant competitive advantage. The Industry 4.0 Maturity Model (I4.0MM) is applied to guide organizations in I4.0 adoption. Nevertheless, most present models have certain limitations, including the absence of standardization, limited scope or narrow focus, and difficulty of use, which makes them less efficient. To address these gaps, this study presents OntoMat 4.0, an ontology that enables interoperability, knowledge sharing, and I4.0 maturity assessment. It was created following a four-step iterative process based on well-established ontology development frameworks, such as LOT and NeOn. The novelty of Ontomat 4.0 includes its innovative functionality through the ability to work alongside established I4.0 ontologies, which enables users to navigate multidimensional I4.0 aspects and extend interoperability while promoting the reuse of relevant and widely recognized ontologies. It also delivers prioritized actionable insights that guide strategic decisions during I4.0 transformation initiatives. Ontomat 4.0 was evaluated and tested through real-world strategic planning and benchmarking applications, and the effectiveness of Ontomat 4.0 was demonstrated in aiding organizations in making informed decisions. It brings the possibility of integrating the technical and nontechnical factors of I4.0 and can be a standard solution for measuring I4.0 maturity. Despite its limitations, this ontology has been shown to fill in the gaps in current models and promote consistency and interoperability.},
keywords = {digital transformation, industry 4.0, interoperability, manufacturing, ontologies, semantic web, supply chain management},
pubstate = {published},
tppubtype = {article}
}
Jeong, Heonyoung; Fekete, Tamas; Bashyal, Atit; Wicaksono, Hendro
From Theory to Practice: Implementing Causal AI in Manufacturing for Sustainability Journal Article
In: Procedia Computer Science, vol. 253, pp. 1495-1504, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, energy management, manufacturing, sustainability
@article{nokey,
title = {From Theory to Practice: Implementing Causal AI in Manufacturing for Sustainability},
author = {Heonyoung Jeong and Tamas Fekete and Atit Bashyal and Hendro Wicaksono },
url = {https://www.sciencedirect.com/science/article/pii/S1877050925002194},
doi = {https://doi.org/10.1016/j.procs.2025.01.211},
year = {2025},
date = {2025-02-25},
journal = {Procedia Computer Science},
volume = {253},
pages = {1495-1504},
abstract = {The use of AI in industry is increasingly popular, but its black-box nature poses decision-making challenges due to the lack of understanding of how variables influence each other. Causal AI addresses this by studying cause-and-effect relationships in the data. This paper explores applying causal AI in industry through a case study of CNC machines, which are significant in manufacturing and consume large amounts of energy. Industry 4.0 is transforming manufacturing, with CNC machines generating vast data analyzed by often opaque machine learning methods. Causal AI can uncover and quantify causal relationships between variables, aiding decision-making. Our case study uses CNC power consumption data to demonstrate causal AI in manufacturing, with existing models verifying our methodology. Future studies should extend our research to include variables without existing models, such as human habits. This case study serves as a starting point for other researchers, facilitating similar studies on complex data.},
keywords = {artificial intelligence, causal AI, causal inference, energy management, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Bashyal, Atit; Alnahas, Hani; Boroukhian, Tina; Wicaksono, Hendro
Demand response based industrial energy management with focus on consumption of renewable energy: a deep reinforcement learning approach Journal Article
In: Procedia Computer Science, vol. 253, pp. 1442-1451, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, demand response system, energy management, manufacturing, reinforcement learning
@article{nokey,
title = {Demand response based industrial energy management with focus on consumption of renewable energy: a deep reinforcement learning approach},
author = {Atit Bashyal and Hani Alnahas and Tina Boroukhian and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S1877050925002145},
doi = {https://doi.org/10.1016/j.procs.2025.01.206},
year = {2025},
date = {2025-02-25},
journal = {Procedia Computer Science},
volume = {253},
pages = {1442-1451},
abstract = {Integrating Renewable Energy Resources (RESs) into power grids requires effective Demand Response (DR) programs. Despite high DR potential in industrial sectors, adoption lags behind that of residential and commercial sectors due to diverse operations and production continuity requirements. This paper explores a reinforcement learning (RL)-based DR scheme for energy-intensive industries, promoting the consumption of distributed Renewable Energy (RE) generation. Our approach introduces modifications to the existing Markov Decision Process (MDP) framework. It proposes a flexible reward structure that provides flexibility in balancing production requirements and promotes the consumption of RE. This study addresses the gap in industrial DR literature, emphasizing tailored DR solutions for industrial settings. The key highlight of our RL-based DR solution is its ability to facilitate a price-based DR scheme while promoting the integration of RE into the smart grid.
},
keywords = {artificial intelligence, demand response system, energy management, manufacturing, reinforcement learning},
pubstate = {published},
tppubtype = {article}
}
Ghribi, Youssef; Graha, Ega Rudy; Wicaksono, Hendro
Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry Journal Article
In: Procedia CIRP, vol. 134, pp. 849–854, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, data science, deep learning, demand forecasting, healthcare, machine learning, manufacturing, supply chain management
@article{ghribi2025comparative,
title = {Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry},
author = {Youssef Ghribi and Ega Rudy Graha and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.procir.2025.02.209},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Procedia CIRP},
volume = {134},
pages = {849–854},
publisher = {Elsevier},
abstract = {Demand forecasting is a crucial instrument in the business strategy. The medical devices in the healthcare system are further significant as critical roles. Multiple businesses rely on traditional forecasting techniques due to their simplicity and understandable algorithm’s easy-to-use nature characteristics. The research conducted for each model analyzes how traditional statistical, Machine Learning (ML), and Deep Learning (DL) models can be used to make demand forecasting more accurate and valuable in the medical device industry. The work expands beyond prior research to demonstrate the enhanced effectiveness of DL models compared to statistical and ML models across multiple areas. However, research still needs to identify studies that adopt a business-centric perspective on the practical applicability of these models. Research utilizing SARIMAX, Exponential Smoothing, Linear Regression, Average, Support Vector Regression (SVR), Random Forest (RF), K-Nearest Neighbour Regression (KNR), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolution 1D (CONV1D) models to forecast what people demand to order. The data comes from a German medical device manufacturer’s past sales record. We evaluated the model’s performance using the weighted Mean Absolute Percentage Error (wMAPE) method. These showed that DL models needed a lot of knowledge and preprocessing, but they were the most accurate at predicting what would happen. The LSTM model exhibited outstanding performance, achieving an average wMAPE of 0.3102, surpassing all other models. The research results for more sophisticated models surpass traditional statistical models despite limited datasets, recommending that medical device businesses consider investing in advanced demand forecasting models.
publisher={Elsevier}
}},
keywords = {artificial intelligence, data science, deep learning, demand forecasting, healthcare, machine learning, manufacturing, supply chain management},
pubstate = {published},
tppubtype = {article}
}
publisher={Elsevier}
}
2024
Shah, Muhammad Abdullah; Wicaksono, Hendro
Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment Journal Article
In: Procedia CIRP, vol. 130, pp. 226-231, 2024.
Abstract | Links | BibTeX | Tags: energy management, machine learning, manufacturing, sustainability
@article{Shah2024,
title = {Leveraging Machine Learning for Power Consumption Prediction of Multi-Step Production Processes in Dynamic Electricity Price Environment},
author = {Muhammad Abdullah Shah and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S2212827124012332},
doi = {https://doi.org/10.1016/j.procir.2024.10.080},
year = {2024},
date = {2024-11-27},
urldate = {2024-11-27},
journal = {Procedia CIRP},
volume = {130},
pages = {226-231},
abstract = {Rising energy costs drive a compelling demand for energy-efficient manufacturing across sectors, paralleled by increasing consumer preferences for eco-friendly products. To remain competitive, companies are actively enhancing their energy efficiency. Integrating dynamic pricing in manufacturing, aimed at optimizing renewable energy use, requires strategic adjustments in production planning for sustainability. This research highlights the importance of incorporating dynamic pricing into production planning, emphasizing the need to shift processes to time slots when the energy prices are low or optimal. This study focuses on predicting the power consumption of multi-step CNC machine operations within a production cycle. Utilizing advanced Machine Learning (ML), including neural networks, statistical, and additive models, this research found unique time series characteristics influencing model performance across production steps. A practical use case within a German manufacturing Small and Medium Enterprises (SME) demonstrates how prediction results can optimize production processes in a dynamic pricing environment, providing a blueprint for diverse machinery forecasting models. This research’s insights extend to any industry managing production schedules for multiple machines with various steps in a process cycle. Industries with high energy consumption will benefit significantly through aligning operational efficiency with environmental sustainability goals.},
keywords = {energy management, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Thapaliya, Suman; Valilai, Omid Fatahi; Wicaksono, Hendro
Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI) Journal Article
In: Procedia Computer Science, vol. 232, pp. 861–870, 2024.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing
@article{thapaliya2024power,
title = {Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI)},
author = {Suman Thapaliya and Omid Fatahi Valilai and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S1877050924000863},
doi = {https://doi.org/10.1016/j.procs.2024.01.086},
year = {2024},
date = {2024-03-20},
urldate = {2024-03-20},
journal = {Procedia Computer Science},
volume = {232},
pages = {861–870},
publisher = {Elsevier},
abstract = {Due to environmental issues such as climate change, companies are required to optimize their resource and energy consumption in their production process. Predicting power consumption and processing time of all production facilities is essential for manufacturing to develop mechanisms to prevent energy and resource waste and optimize their use. Machine learning is a powerful tool for prediction tasks using data in digitalized environments. In this paper, we present power consumption and processing time prediction of CNC milling machines using five machine learning regression models, i.e., decision tree, random forest, support vector regression (SVR), extreme gradient boosting (XGBoost), and artificial neural network (ANN). Since most of those models are black-box, we applied two explainable artificial intelligence (XAI) approaches, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to give post-hoc explanations of the predictions given by the machine learning models. Our experiments indicated that random forest regression performed the best in predicting power consumption and processing time. The explanation showed that the number of axis rotations and the number of travels to the machine's zero point in rapid traverse were the most important factors that affected the processing time and power consumption. The companies using CNC milling machines can use our prediction models to optimally plan and schedule the operation of the milling machines in a time and energy-efficient manner. They can also optimize the factors that affect power consumption and processing time the most.
},
keywords = {energy management, explainable AI, machine learning, manufacturing},
pubstate = {published},
tppubtype = {article}
}
Habtemichael, Noah; Wicaksono, Hendro; Valilai, Omid Fatahi
NFT based Digital Twins for Tracing Value Added Creation in Manufacturing Supply Chains Journal Article
In: Procedia Computer Science, vol. 232, pp. 2841–2846, 2024.
Abstract | Links | BibTeX | Tags: blockchain, digital twins, manufacturing, supply chain management
@article{habtemichael2024nft,
title = {NFT based Digital Twins for Tracing Value Added Creation in Manufacturing Supply Chains},
author = {Noah Habtemichael and Hendro Wicaksono and Omid Fatahi Valilai},
url = {https://www.sciencedirect.com/science/article/pii/S1877050924002771},
doi = {https://doi.org/10.1016/j.mex.2024.102868},
year = {2024},
date = {2024-03-20},
urldate = {2024-01-01},
journal = {Procedia Computer Science},
volume = {232},
pages = {2841–2846},
publisher = {Elsevier},
abstract = {The globalization of products and markets increases the distance between the origin of products and consumers. This leads to a condition where customers don't have information about the origins of their products. Thus, traceability has become an essential sub-system of manufacturing supply chain management. However, due to globalization and complexity of supply chain interactions among the suppliers and manufacturing enterprises, it is hard to pinpoint the exact contributions of different actors in a supply chain. Integrated supply network structure with suitable visibility and usage of real time data transfer is another area of great importance. This paper focuses on how NFT (Non-Fungible Token) coupled with smart contracts could utilize blockchain to make it easier to track the products in a supply chain. Explaining how NFT's could help in tracking the contributions of different stakeholders in a supply chain by tracking the product throughout the entire process of sourcing, production, and sale by using a digital twin. In a manufacturing supply chain enabled by NFT Technology, whenever raw materials are transferred and processed through the supply chain, an NFT would be attached to its digital twin which will capture the created values. Each NFT can easily and uniquely be known by its data stored. Data would be updated based on real time information and will enable the stakeholders to trace the product information about how much each company has contributed to the produced products. The data stored in the form of a smart contract in the blockchain prevents the data being entered from being destroyed, eliminated, or changed without permission. Thus, there is a secure data flow among different stakeholders.
},
keywords = {blockchain, digital twins, manufacturing, supply chain management},
pubstate = {published},
tppubtype = {article}
}
2023
Aikenov, Temirlan; Hidayat, Rahmat; Wicaksono, Hendro
Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry Proceedings Article
In: International Conference on Flexible Automation and Intelligent Manufacturing, pp. 1183–1193, Springer Nature Switzerland Cham 2023.
Abstract | Links | BibTeX | Tags: energy management, explainable AI, machine learning, manufacturing, sustainability
@inproceedings{aikenov2023power,
title = {Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry},
author = {Temirlan Aikenov and Rahmat Hidayat and Hendro Wicaksono},
url = {https://link.springer.com/chapter/10.1007/978-3-031-38165-2_135},
doi = {https://doi.org/10.1007/978-3-031-38165-2_135},
year = {2023},
date = {2023-08-25},
urldate = {2023-01-01},
booktitle = {International Conference on Flexible Automation and Intelligent Manufacturing},
pages = {1183–1193},
organization = {Springer Nature Switzerland Cham},
abstract = {Production shifted from a product-centered perspective (mass production of one article) to a customer-centered perspective (mass customization of product variants). It also happens in energy-intensive industries, such as steel production. Mass customization companies face a challenge in accurately estimating the total costs of an individual product. Furthermore, 20% to 40% of the costs related to steel products come from energy. Increasing the product variety can cause an inevitable loss of sustainability. This paper presents machine-learning approaches to improve the sustainability of the steel production industry. It is done by finding the most accurate way to predict the power consumption and the costs of customized products. Moreover, this research also finds the most energy-efficient machine mix based on the predictions. The method is validated in a steel manufacturing Small Medium Enterprise (SME). In this research, experiments were conducted with different machine learning models, and it was found that the most accurate results were achieved using regularization-based and random forest regression models. Explainable AI (XAI) is also used to clarify how product properties influence process costs and power consumption. This paper also discusses scenarios on how the prediction of costs and power consumption can assist production planners in performing workstation selection. This research improves the production planning of customized products by providing a trustable decision support system for machine selection based on explainable machine learning models for process time and power consumption predictions.
},
keywords = {energy management, explainable AI, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {inproceedings}
}
Krstevski, Stefan; Valilai, Omid Fatahi; Wicaksono, Hendro
Integrating Real-Time Dynamic Electricity Price Forecast into Job Shop Production Scheduling Model with Multiple Machine Environments Proceedings Article
In: Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications, pp. 98–106, 2023.
Abstract | Links | BibTeX | Tags: energy management, manufacturing, operation research
@inproceedings{krstevski2023integrating,
title = {Integrating Real-Time Dynamic Electricity Price Forecast into Job Shop Production Scheduling Model with Multiple Machine Environments},
author = {Stefan Krstevski and Omid Fatahi Valilai and Hendro Wicaksono},
doi = {https://doi.org/10.1145/3587889.3587905},
year = {2023},
date = {2023-06-09},
urldate = {2023-01-01},
booktitle = {Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications},
pages = {98–106},
abstract = {One of the challenges in the transition towards green electricity is the intermittence of power generated by renewable sources. Thus, power consumers, including the manufacturing industry, must adapt their activities and processes to green electricity supply. Real-time dynamic pricing is an approach to encourage electricity consumers to change their consumption patterns by lowering prices when the availability of green electricity in the grid is high. Due to the introduction of real-time electricity pricing, manufacturing companies must adapt their production planning by integrating dynamic price information into their production scheduling. Our research focuses on extending the basic production scheduling mathematical model by introducing real-time power pricing in the model. The prices are built based on the current proportion of green electricity in the grid represented in the green electricity index (GEI) with one-hour intervals. This paper also illustrates a scenario of how to use the model. Our future research will further extend the model addressing the flexibility of manufacturing shop floors (e.g. adding buffer, retooling, and setup time) and validate the model in two small and medium manufacturing enterprises.
},
keywords = {energy management, manufacturing, operation research},
pubstate = {published},
tppubtype = {inproceedings}
}
2022
Wicaksono, Hendro
Production Planning and Control: Theories and Best Practices Journal Article
In: 2022.
BibTeX | Tags: data science, manufacturing
@article{wicaksono2022production,
title = {Production Planning and Control: Theories and Best Practices},
author = {Hendro Wicaksono},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
publisher = {OSF Preprints},
keywords = {data science, manufacturing},
pubstate = {published},
tppubtype = {article}
}
2021
Wicaksono, Hendro
Data Driven Manufacturing: Challenges and Opportunities Presentation
01.01.2021.
BibTeX | Tags: data science, machine learning, manufacturing
@misc{wicaksono2021data,
title = {Data Driven Manufacturing: Challenges and Opportunities},
author = {Hendro Wicaksono},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
publisher = {OSF},
keywords = {data science, machine learning, manufacturing},
pubstate = {published},
tppubtype = {presentation}
}
2020
Wicaksono, Hendro; Ni, Tianran
An Automated Information System for Medium to Short-Term Manpower Capacity Planning in Make-To-Order Manufacturing Journal Article
In: Procedia Manufacturing, vol. 52, pp. 319–324, 2020.
BibTeX | Tags: data science, manufacturing
@article{wicaksono2020automated,
title = {An Automated Information System for Medium to Short-Term Manpower Capacity Planning in Make-To-Order Manufacturing},
author = {Hendro Wicaksono and Tianran Ni},
year = {2020},
date = {2020-01-01},
urldate = {2020-01-01},
journal = {Procedia Manufacturing},
volume = {52},
pages = {319–324},
publisher = {Elsevier},
keywords = {data science, manufacturing},
pubstate = {published},
tppubtype = {article}
}