2025
Chawalitanont, Akarawint; Bashyal, Atit; Wicaksono, Hendro
In: Journal of Manufacturing Systems, vol. 83, pp. 713–735, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, deep learning, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability
@article{chawalitanont2025uncertaintyb,
title = {Uncertainty-aware power consumption prediction in customized stainless-steel manufacturing: A comparative study of hierarchical Bayesian and deep neural models},
author = {Akarawint Chawalitanont and Atit Bashyal and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.jmsy.2025.10.010},
year = {2025},
date = {2025-12-01},
urldate = {2025-12-01},
journal = {Journal of Manufacturing Systems},
volume = {83},
pages = {713–735},
publisher = {Elsevier},
abstract = {Energy-efficient and data-driven decision-making has become a critical priority in modern manufacturing, particularly in customized or make-to-order (MTO) production where product variability causes large fluctuations in power consumption. Existing prediction models in this domain are often deterministic, lacking the ability to quantify uncertainty and capture hierarchical data dependencies, which limits their reliability for operational use. This study addresses this gap by developing a hierarchical Bayesian learning framework for power consumption prediction in customized stainless-steel manufacturing. The objective is to design models that not only achieve high predictive accuracy but also provide calibrated uncertainty estimates to support risk-aware production decisions. Four models, i.e., Hierarchical Bayesian Linear Regression (HBLR), Hierarchical Bayesian Neural Network (HBNN), Fully Connected Neural Network (FCN), and One-Dimensional Convolutional Neural Network (1D-CNN), were implemented and benchmarked using three inference algorithms: No-U-Turn Sampler (NUTS), Automatic Differentiation Variational Inference (ADVI), and Stein Variational Gradient Descent (SVGD). The innovation lies in systematically quantifying uncertainty using coverage probability, sharpness, and calibration error, and in establishing a unified comparison between probabilistic and deterministic models. Results show that the HBLR–NUTS model achieves the best trade-off between accuracy (RMSE = 11.85) and calibration quality (coverage 0.98), while ADVI offers near-equivalent performance with significantly lower computation time. These uncertainty-aware predictions can be directly integrated into Manufacturing Execution System (MES) and Enterprise Resource Planning (ERP) environments for energy-optimized scheduling and cost-aware planning. The proposed framework provides a scalable, interpretable, and statistically reliable foundation for advancing sustainable, data-driven manufacturing analytics.},
keywords = {artificial intelligence, deep learning, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Boroukhian, Tina; Supyen, Kritkorn; Mclaughlan, Christopher William; Bashyal, Atit; Pham, Tuan; Wicaksono, Hendro
Semantic middleware for demand response systems: Enhancing data interoperability in green electricity management for manufacturing Journal Article
In: Computers in Industry, vol. 172, pp. 104354, 2025.
Abstract | Links | BibTeX | Tags: data management, demand response system, energy management, green energy, industry 4.0, industry 5.0, knowledge management, manufacturing, ontologies, semantic web, sustainability
@article{boroukhian2025semantic,
title = {Semantic middleware for demand response systems: Enhancing data interoperability in green electricity management for manufacturing},
author = {Tina Boroukhian and Kritkorn Supyen and Christopher William Mclaughlan and Atit Bashyal and Tuan Pham and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.compind.2025.104354},
year = {2025},
date = {2025-11-01},
urldate = {2025-01-01},
journal = {Computers in Industry},
volume = {172},
pages = {104354},
publisher = {Elsevier},
abstract = {Optimizing the consumption of green electricity across sectors, including manufacturing, is a critical strategy for achieving net-zero emissions and advancing clean production in Europe by 2050. Demand Response (DR) represents a promising approach to engaging power consumers from all sectors in the transition toward increased utilization of renewable energy sources. A functional DR system for manufacturing power consumers requires seamless data integration and communication between information systems across multiple domains, including both power consumption and generation. This paper introduces a semantic middleware specifically designed for DR systems in the manufacturing sector, using an ontology as the central information model. To develop this ontology, we adopted a strategy that reuses and unifies existing ontologies from multiple domains, ensuring comprehensive coverage of the data requirements for DR applications in manufacturing. To operationalize this strategy, we designed novel methods for effective ontology unification and implemented them within a dedicated unification tool. This process was followed by data-to-ontology mapping to construct a knowledge graph, and was further extended through the development of a querying system equipped with a natural language interface. Additionally, this paper offers insights into the deployment environment of the semantic middleware, encompassing multiple data sources and the applications that utilize this data. The proposed approach is implemented in multiple German manufacturing small and medium-sized enterprises connected to a utility company, demonstrating consistent data interpretation and seamless information integration. Consequently, the method offers practical potential for optimizing green electricity usage in the manufacturing sector and supporting the transition toward a more sustainable and cleaner future.},
keywords = {data management, demand response system, energy management, green energy, industry 4.0, industry 5.0, knowledge management, manufacturing, ontologies, semantic web, sustainability},
pubstate = {published},
tppubtype = {article}
}
Fekete, Tamas; Petrone, Isabella Marquez; Wicaksono, Hendro
A comprehensive causal AI framework for analysing factors affecting energy consumption and costs in customised manufacturing Journal Article
In: International Journal of Production Research, pp. 1–38, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, energy management, explainable AI, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability
@article{fekete2025comprehensive,
title = {A comprehensive causal AI framework for analysing factors affecting energy consumption and costs in customised manufacturing},
author = {Tamas Fekete and Isabella Marquez Petrone and Hendro Wicaksono},
url = {https://hendro-wicaksono.de/a-comprehensive-causal-ai-framework-for-analysing-factors-affecting-energy-consumption-and-costs-in-customised-manufacturing-2/},
doi = {https://doi.org/10.1080/00207543.2025.2580541},
year = {2025},
date = {2025-10-29},
urldate = {2025-10-29},
journal = {International Journal of Production Research},
pages = {1–38},
publisher = {Taylor & Francis},
abstract = {The manufacturing sector is a major energy consumer, resulting in high operational costs and environmental impacts. In customised manufacturing, optimising energy use is especially challenging due to high variability and complex interdependencies between process factors. Meanwhile, the increasing availability of operational data presents opportunities for advanced analytics. Unlike traditional machine learning, which identifies correlations, causal AI uncovers cause-and-effect relationships – enabling more explainable and actionable decision-making. This paper presents a causal AI framework that combines causal discovery and inference methods to analyse drivers of energy consumption and process duration in customised manufacturing. We integrate three core components: DirectLiNGAM and RESIT for causal discovery, and DoWhy for causal inference. Applied to a real-world case study in a German energy-intensive manufacturing Small and Medium-sized Enterprise (SME), the framework demonstrates its ability to identify key causal drivers of inefficiency and energy use. Results show improved interpretability, revealing, for example, that increasing product weight can reduce energy consumption by up to 4.70 kWh per unit, enabling targeted, data-driven interventions for optimisation. Compared to correlation-based models, the framework reveals underlying causes, helping decision-makers focus on critical levers for sustainability and cost reduction. The findings lay a foundation for applying causal AI in industrial settings through a structured, data-driven approach.},
keywords = {artificial intelligence, causal AI, causal inference, energy management, explainable AI, industry 4.0, industry 5.0, machine learning, manufacturing, sustainability},
pubstate = {published},
tppubtype = {article}
}
Gupta, Ishansh; Martinez, Adriana; Correa, Sergio; Wicaksono, Hendro
In: Supply Chain Analytics, vol. 10, pp. 100116, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, data science, decision support systems, industry 4.0, industry 5.0, machine learning, multi criteria decision making, resillience, supply chain management, technology adoption
@article{gupta2025comparative,
title = {A comparative assessment of causal machine learning and traditional methods for enhancing supply chain resiliency and efficiency in the automotive industry},
author = {Ishansh Gupta and Adriana Martinez and Sergio Correa and Hendro Wicaksono},
doi = {https://doi.org/10.1016/j.sca.2025.100116},
year = {2025},
date = {2025-06-01},
urldate = {2025-06-01},
journal = {Supply Chain Analytics},
volume = {10},
pages = {100116},
publisher = {Elsevier},
abstract = {Efficient supplier escalation is crucial for maintaining smooth operational supply chains in the automotive industry, as disruptions can lead to significant production delays and financial losses. Many companies still rely on traditional escalation methods, which may lack the precision and adaptability offered by modern technologies. This study presents a comparative analysis of decision-making strategies for supplier escalation, evaluating causal machine learning (CML), traditional machine learning (ML), and current escalation practices in a leading German automotive company. The study employs an explanatory sequential mixed method, integrating the Analytical Hierarchy Process (AHP) with in-depth interviews with 25 industry experts. These methods are assessed based on several performance metrics: accuracy, business impact, explanation capability, human bias, stress test, and time-to-recover. Findings reveal that CML outperforms traditional ML and existing approaches, offering superior risk prediction, interpretability, and decision-making support Additionally, the research explores the internal acceptance of these technologies through the Technology Acceptance Model (TAM). The results highlight the transformative potential of CML in enhancing supply chain resilience and efficiency. By bridging the gap between predictive analytics and explainable AI, this research offers valuable guidance for firms seeking to optimize supplier management using advanced analytics.},
keywords = {artificial intelligence, causal AI, causal inference, data science, decision support systems, industry 4.0, industry 5.0, machine learning, multi criteria decision making, resillience, supply chain management, technology adoption},
pubstate = {published},
tppubtype = {article}
}
Fekete, Tamas; Mengistu, Girum; Wicaksono, Hendro
Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study Journal Article
In: Sustainable Cities and Society, vol. 122, pp. 106240, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, industry 5.0, machine learning, sustainability, transportation
@article{nokey,
title = {Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study},
author = {Tamas Fekete and Girum Mengistu and Hendro Wicaksono },
doi = {https://doi.org/10.1016/j.scs.2025.106240},
year = {2025},
date = {2025-03-15},
urldate = {2025-03-15},
journal = {Sustainable Cities and Society},
volume = {122},
pages = {106240},
abstract = {The importance of developing sustainable urban transportation systems to protect the environment is increasingly recognized worldwide, particularly within the European Union. In the era of digitalization, data-driven approaches are crucial for informed decision-making. This study introduces a methodology leveraging causal artificial intelligence (causal AI) to uncover cause-and-effect relationships in urban transport data. Unlike traditional methods relying on correlations, causal AI identifies the true drivers of transport dynamics. A case study using MOL Bubi bike-sharing data from Budapest demonstrates how the PCMCI (Peter and Clark Momentary Conditional Independence) algorithm revealed complex temporal dependencies within the data, with temperature emerging as the strongest causal factor positively influencing bike usage. Additionally, the reopening of the Chain Bridge led to a 10.7% increase in bike trips, as quantified by Causal Impact analysis. This case study can be extended to more complex scenarios with unpredictable outcomes. The insights gained provide policymakers with a deeper understanding, enabling them to design policies fostering sustainable urban mobility. These results showcase the potential of causal AI to guide policies that enhance sustainable urban mobility.},
keywords = {artificial intelligence, causal AI, causal inference, industry 5.0, machine learning, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}