2025
Fekete, Tamas; Wicaksono, Hendro
Ontology-guided causal discovery and inference for reducing CO2 emissions in transportation Journal Article
In: International Journal of Sustainable Transportation, pp. 1–21, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, machine learning, ontologies, semantic web, sustainability, transportation
@article{fekete2025ontology,
title = {Ontology-guided causal discovery and inference for reducing CO2 emissions in transportation},
author = {Tamas Fekete and Hendro Wicaksono},
url = {https://www.tandfonline.com/eprint/4CUZX6ZZ5J8R8UCGIUEH/full?target=10.1080/15568318.2025.2588608},
doi = {https://doi.org/10.1080/15568318.2025.2588608},
year = {2025},
date = {2025-12-07},
urldate = {2025-12-07},
journal = {International Journal of Sustainable Transportation},
pages = {1–21},
publisher = {Taylor & Francis},
abstract = {This study investigates how ontology-guided causal discovery can be applied to reduce CO2 emissions in transportation. The analysis uses a cross-sectional dataset of 463,568 passenger vehicles inspected in Hungary between January and March 2023, which includes key technical attributes such as engine performance, cylinder capacity, and drive-by noise levels. Using causal discovery algorithms (PC, FCI, and GES) with and without ontology-based constraints, directed acyclic graphs are constructed to identify structural relationships among these variables and CO2 emissions. For causal inference, effect sizes of engine performance and other technical characteristics on emissions are estimated while considering potential confounding factors. The findings show that ontology-informed models improve both the plausibility and interpretability of the discovered causal structures, though limitations remain regarding unobserved variables and nonlinear relationships; accordingly, this validation-focused case study provides a foundation for extensions to behavior-driven contexts (e.g. usage patterns, compliance, market responses) where causal structure and effect magnitudes are more uncertain in advance. The results indicate that cylinder capacity and specific power (engine performance at fixed displacement) are among the strongest contributors to CO2 emissions, with ontology constraints reducing spurious links and increasing robustness across algorithms. Policy implications include the need for regulatory measures that integrate domain knowledge into emissions assessments, as well as the importance of updating technical standards and testing frameworks to reflect causal interactions rather than simple correlations. These insights can support more reliable interventions to lower vehicle-related emissions and contribute to sustainable transportation strategies.},
keywords = {artificial intelligence, causal AI, causal inference, machine learning, ontologies, semantic web, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}
Priyandari, Yusuf; Sutopo, Wahyudi; Nizam, Muhammad; Wicaksono, Hendro
In: Scientific Reports, vol. 15, no. 1, pp. 36613, 2025.
Abstract | Links | BibTeX | Tags: automotive industry, product service system, resillience, supply chain management, sustainability, transportation
@article{priyandari2025vulnerability,
title = {Vulnerability assessment model integrating outcome and characteristic-based metrics for electric motorcycle battery swapping and charging stations},
author = {Yusuf Priyandari and Wahyudi Sutopo and Muhammad Nizam and Hendro Wicaksono},
doi = {https://doi.org/10.1038/s41598-025-20325-x},
year = {2025},
date = {2025-10-21},
urldate = {2025-10-21},
journal = {Scientific Reports},
volume = {15},
number = {1},
pages = {36613},
publisher = {Nature Publishing Group UK London},
abstract = {Battery swapping and charging stations are essential for increasing the adoption of electric motorcycles. The stations address the range anxiety issue and quickly obtain a fully recharged battery. However, operational issues with swapping and charging activities drive operational vulnerability. Therefore, this study proposes a vulnerability assessment model utilizing the IoT Platform data of electric motorcycle battery swapping and charging stations. The model computes a vulnerability score by integrating vulnerability indicator metrics of the system outcome and characteristic. The system outcome uses performance data representing vulnerability impact. The system characteristic uses data from the vulnerability driver and exposure factors. The driver factor represents mitigation ability, and the exposure factor represents conditions that may affect both the mitigation ability and performance. The model also classifies the vulnerability of stations in four categories: not vulnerable, potentially vulnerable, moderately vulnerable, and vulnerable. The model was implemented in a case in Jakarta. The result reveals significant differences in vulnerability among stations, although most stations fall into the not vulnerable to moderately vulnerable categories. The findings facilitate identifying station characteristics that potentially affect performance quantitatively.},
keywords = {automotive industry, product service system, resillience, supply chain management, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}
Fekete, Tamas; Mengistu, Girum; Wicaksono, Hendro
Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study Journal Article
In: Sustainable Cities and Society, vol. 122, pp. 106240, 2025.
Abstract | Links | BibTeX | Tags: artificial intelligence, causal AI, causal inference, industry 5.0, machine learning, sustainability, transportation
@article{nokey,
title = {Leveraging causal AI to uncover the dynamics in sustainable urban transport: A bike sharing time-series study},
author = {Tamas Fekete and Girum Mengistu and Hendro Wicaksono },
doi = {https://doi.org/10.1016/j.scs.2025.106240},
year = {2025},
date = {2025-03-15},
urldate = {2025-03-15},
journal = {Sustainable Cities and Society},
volume = {122},
pages = {106240},
abstract = {The importance of developing sustainable urban transportation systems to protect the environment is increasingly recognized worldwide, particularly within the European Union. In the era of digitalization, data-driven approaches are crucial for informed decision-making. This study introduces a methodology leveraging causal artificial intelligence (causal AI) to uncover cause-and-effect relationships in urban transport data. Unlike traditional methods relying on correlations, causal AI identifies the true drivers of transport dynamics. A case study using MOL Bubi bike-sharing data from Budapest demonstrates how the PCMCI (Peter and Clark Momentary Conditional Independence) algorithm revealed complex temporal dependencies within the data, with temperature emerging as the strongest causal factor positively influencing bike usage. Additionally, the reopening of the Chain Bridge led to a 10.7% increase in bike trips, as quantified by Causal Impact analysis. This case study can be extended to more complex scenarios with unpredictable outcomes. The insights gained provide policymakers with a deeper understanding, enabling them to design policies fostering sustainable urban mobility. These results showcase the potential of causal AI to guide policies that enhance sustainable urban mobility.},
keywords = {artificial intelligence, causal AI, causal inference, industry 5.0, machine learning, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}
2024
Yuniaristanto,; Sutopo, Wahyudi; Hisjam, Muhammad; Wicaksono, Hendro
Estimating the market share of electric motorcycles: A system dynamics approach with the policy mix and sustainable life cycle costs Journal Article
In: Energy Policy, vol. 195, pp. 114345, 2024.
Abstract | Links | BibTeX | Tags: e-mobility, sustainability, system dynamics, technology adoption, transportation
@article{yuniaristanto2024estimating,
title = {Estimating the market share of electric motorcycles: A system dynamics approach with the policy mix and sustainable life cycle costs},
author = {Yuniaristanto and Wahyudi Sutopo and Muhammad Hisjam and Hendro Wicaksono},
url = {https://www.sciencedirect.com/science/article/pii/S0301421524003653},
doi = {https://doi.org/10.1016/j.enpol.2024.114345},
year = {2024},
date = {2024-12-01},
urldate = {2024-01-01},
journal = {Energy Policy},
volume = {195},
pages = {114345},
publisher = {Elsevier},
abstract = {Introducing electric vehicles is critical to maintaining air quality and reducing carbon emissions. The Indonesian government has issued several regulations to stimulate the diffusion of electric vehicles. This research attempts to forecast the electric vehicle market share, especially electric motorcycles, by involving the policy mix and sustainable life cycle costs. We propose a system dynamics approach that takes into account a policy mix including 0% down payment without credit interest subsidies, tax abolition, expansion of charging station network, and sustainable life cycle costs, i.e., total cost of ownership, social, and environment. The system dynamics model has four modules: the electric motorcycle cost, the conventional motorcycle cost, the economy module, and the consumer market. The simulation results show that the electric motorcycle market share will increase positively in 2021–2030, reaching 5.7% in 2030. Based on the scenario simulation results, providing more charging stations and vehicle tax abolition can significantly boost the market share of electric motorcycles in Indonesia. The study provides valuable insights for policymakers in formulating more appropriate policy instruments to promote electric vehicle diffusion in Indonesia.
},
keywords = {e-mobility, sustainability, system dynamics, technology adoption, transportation},
pubstate = {published},
tppubtype = {article}
}
Rahmawati, Tasya Santi; Sutopo, Wahyudi; Wicaksono, Hendro
Investment Decision-Making to Select Converted Electric Motorcycle Tests in Indonesia Journal Article
In: World Electric Vehicle Journal, vol. 15, no. 8, pp. 334, 2024.
Abstract | Links | BibTeX | Tags: e-mobility, multi criteria decision making, technology adoption, TOPSIS, transportation
@article{rahmawati2024investment,
title = {Investment Decision-Making to Select Converted Electric Motorcycle Tests in Indonesia},
author = {Tasya Santi Rahmawati and Wahyudi Sutopo and Hendro Wicaksono},
url = {https://www.mdpi.com/2032-6653/15/8/334},
doi = {https://doi.org/10.3390/wevj15080334},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {World Electric Vehicle Journal},
volume = {15},
number = {8},
pages = {334},
publisher = {MDPI AG},
abstract = {The issue of carbon emissions can be addressed through environmentally friendly technological innovations, which contribute to the journey towards achieving net-zero emissions (NZE). The electrification of transportation by converting internal combustion engine (ICE) motorcycles to converted electric motorcycles (CEM) directly reduces the number of pollution sources from fossil-powered motors. In Indonesia, numerous government regulations support the commercialization of the CEM system, including the requirement for conversion workshops to be formal entities in the CEM process. Every CEM must pass a test to ensure its safety and suitability. Currently, the CEM testing process is conducted at only one location, making it inefficient and inaccessible. Therefore, most conversion workshops in Indonesia need to take investment steps in procuring CEM-type test tools. This research aims to determine the best alternative from several investment alternatives for CEM-type test tools. In selecting the investment, three criteria are considered: costs, operations, and specifications. By using the investment decision-making model, a hierarchical decision-making model is obtained, which is then processed using the analytical hierarchy process (AHP) and the technique for order of preference by similarity to the ideal solution (TOPSIS). Criteria are weighted to establish a priority order. The final step involves ranking the alternatives and selecting Investment 2 (INV2) as the best investment tool with a relative closeness value of 0.6279. Investment 2 has the shortest time process (40 min), the lowest electricity requirement, and the smallest dimensions. This research aims to provide recommendations for the best investment alternatives that can be purchased by the conversion workshops.
},
keywords = {e-mobility, multi criteria decision making, technology adoption, TOPSIS, transportation},
pubstate = {published},
tppubtype = {article}
}
2023
Wicaksono, Hendro; Nisa, Mehr Un; Vijaya, Annas
In: 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 0528–0532, IEEE 2023.
Abstract | Links | BibTeX | Tags: digital twins, explainable AI, interoperability, ontologies, semantic web, transportation
@inproceedings{wicaksono2023towards,
title = {Towards Intelligent and Trustable Digital Twin Asset Management Platform for Transportation Infrastructure Management Using Knowledge Graph and Explainable Artificial Intelligence (XAI)},
author = {Hendro Wicaksono and Mehr Un Nisa and Annas Vijaya},
doi = {https://doi.org/10.1109/IEEM58616.2023.10406401},
year = {2023},
date = {2023-12-18},
urldate = {2023-01-01},
booktitle = {2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)},
pages = {0528–0532},
organization = {IEEE},
abstract = {In the transportation sector, implementing digital twins is part of the digitization measure to improve resource efficiency in infrastructure management. However, the use of digital twins is still limited due to challenges such as a lack of shared understanding of digital twin models, complex model integration, security issues, lack of access to essential data, and high costs due to inefficient business models. This research develops an asset management platform suitable for Small and Medium Enterprises (SMEs) for the cross-company, secure, and intuitive collaborative management of digital twin assets. It can be achieved by developing an ontology-based semantic model of the assets, explainable machine learning (XAI), and a scenario-based intelligent search and discovery mechanism.},
keywords = {digital twins, explainable AI, interoperability, ontologies, semantic web, transportation},
pubstate = {published},
tppubtype = {inproceedings}
}
2022
Istiqomah, Silvi; Sutopo, Wahyudi; Hisjam, Muhammad; Wicaksono, Hendro
Optimizing Electric Motorcycle-Charging Station Locations for Easy Accessibility and Public Benefit: A Case Study in Surakarta Journal Article
In: World Electr. Veh. J., vol. 13, no. 12, pp. 232, 2022.
BibTeX | Tags: operation research, sustainability, transportation
@article{istiqomah2022optimizing,
title = {Optimizing Electric Motorcycle-Charging Station Locations for Easy Accessibility and Public Benefit: A Case Study in Surakarta},
author = {Silvi Istiqomah and Wahyudi Sutopo and Muhammad Hisjam and Hendro Wicaksono},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {World Electr. Veh. J.},
volume = {13},
number = {12},
pages = {232},
keywords = {operation research, sustainability, transportation},
pubstate = {published},
tppubtype = {article}
}